Best Python code snippet using avocado_python
test_neighborhoods.py
Source:test_neighborhoods.py  
...30        # son 5 entradas en el array porque se cuenta a la celula como un31        # vecino32        mask = np.array([[1, 0, 0, 0, 0]], dtype=bool)3334        self.assertTrue(np.array_equal(neighborhood.get_mask(), mask))3536    def test_get_mask_case_2(self):37        """38        Este metodo testea el metodo get_mask de la clase LeftCellNeighborhood39        """40        neighborhood = LeftCellNeighborhood(3, inclusive=True)41        mask = np.array([[1, 0, 0, 1]], dtype=bool)4243        self.assertTrue(np.array_equal(neighborhood.get_mask(), mask))4445    def test_get_offset_case_1(self):46        """47        Este metodo testea el metodo get_mask de la clase LeftCellNeighborhood48        """49        neighborhood = LeftCellNeighborhood(4)50        offset = (0, -4)5152        self.assertEqual(neighborhood.get_offset(), offset)5354    def test_get_offset_case_2(self):55        """56        Este metodo testea el metodo get_mask de la clase LeftCellNeighborhood57        """58        neighborhood = LeftCellNeighborhood(3)59        offset = (0, -3)6061        self.assertEqual(neighborhood.get_offset(), offset)626364class TestRightCellNeighborhood(unittest.TestCase):65    """66    Tests para RightCellNeighborhood67    """6869    def test_get_mask_case_1(self):70        """71        Este metodo testea el metodo get_mask de la clase RightCellNeighborhood72        """73        neighborhood = RightCellNeighborhood(4, inclusive=False)74        # son 5 entradas en el array porque se cuenta a la celula como un75        # vecino76        mask = np.array([[0, 0, 0, 0, 1]], dtype=bool)7778        self.assertTrue(np.array_equal(neighborhood.get_mask(), mask))7980    def test_get_mask_case_2(self):81        """82        Este metodo testea el metodo get_mask de la clase RightCellNeighborhood83        """84        neighborhood = RightCellNeighborhood(3, inclusive=True)85        mask = np.array([[1, 0, 0, 1]], dtype=bool)8687        self.assertTrue(np.array_equal(neighborhood.get_mask(), mask))8889    def test_get_offset_case_1(self):90        """91        Este metodo testea el metodo get_mask de la clase RightCellNeighborhood92        """93        neighborhood = RightCellNeighborhood(4)94        offset = (0, 0)9596        self.assertEqual(neighborhood.get_offset(), offset)979899class TestIntervalCellNeighborhood(unittest.TestCase):100    """101    Tests para IntervalCellNeighborhood102    """103104    def test_get_mask_case_1(self):105        """106        Este metodo testea el metodo get_mask de la clase107        IntervalCellNeighborhood108        """109        neighborhood = IntervalCellNeighborhood(4, 3, inclusive=False)110        # son 5 entradas en el array porque se cuenta a la celula como un111        # vecino112        mask = np.array([[1, 0, 0, 0, 0, 0, 0, 1]], dtype=bool)113114        self.assertTrue(np.array_equal(neighborhood.get_mask(), mask))115116    def test_get_mask_case_2(self):117        """118        Este metodo testea el metodo get_mask de la clase119        IntervalCellNeighborhood120        """121        neighborhood = IntervalCellNeighborhood(3, 4, inclusive=True)122        mask = np.array([[1, 0, 0, 1, 0, 0, 0, 1]], dtype=bool)123124        self.assertTrue(np.array_equal(neighborhood.get_mask(), mask))125126    def test_get_offset_case_1(self):127        """128        Este metodo testea el metodo get_mask de la clase129        IntervalCellNeighborhood130        """131        neighborhood = IntervalCellNeighborhood(4, 3)132        offset = (0, -4)133134        self.assertEqual(neighborhood.get_offset(), offset)135136    def test_get_offset_case_2(self):137        """138        Este metodo testea el metodo get_mask de la clase139        IntervalCellNeighborhood140        """141        neighborhood = IntervalCellNeighborhood(3, 4)142        offset = (0, -3)143144        self.assertEqual(neighborhood.get_offset(), offset)145146147class TestLeftSideNeighborhood(unittest.TestCase):148    """149    Tests para LeftSideNeighborhood150    """151152    def test_get_mask_case_1(self):153        """154        Este metodo testea el metodo get_mask de la clase155        LeftSideNeighborhood156        """157        neighborhood = LeftSideNeighborhood(4, inclusive=False)158        # son 5 entradas en el array porque se cuenta a la celula como un159        # vecino160        mask = np.array([[1, 1, 1, 1, 0]], dtype=bool)161162        self.assertTrue(np.array_equal(neighborhood.get_mask(), mask))163164    def test_get_mask_case_2(self):165        """166        Este metodo testea el metodo get_mask de la clase167        LeftSideNeighborhood168        """169        neighborhood = LeftSideNeighborhood(3, inclusive=True)170        mask = np.array([[1, 1, 1, 1]], dtype=bool)171172        self.assertTrue(np.array_equal(neighborhood.get_mask(), mask))173174    def test_get_offset_case_1(self):175        """176        Este metodo testea el metodo get_mask de la clase177        LeftSideNeighborhood178        """179        neighborhood = LeftSideNeighborhood(4)180        offset = (0, -4)181182        self.assertEqual(neighborhood.get_offset(), offset)183184    def test_get_offset_case_2(self):185        """186        Este metodo testea el metodo get_mask de la clase187        LeftSideNeighborhood188        """189        neighborhood = LeftSideNeighborhood(3)190        offset = (0, -3)191192        self.assertEqual(neighborhood.get_offset(), offset)193194195class TestRightSideNeighborhood(unittest.TestCase):196    """197    Tests para RightSideNeighborhood198    """199200    def test_get_mask_case_1(self):201        """202        Este metodo testea el metodo get_mask de la clase RightSideNeighborhood203        """204        neighborhood = RightSideNeighborhood(4, inclusive=False)205        # son 5 entradas en el array porque se cuenta a la celula como un206        # vecino207        mask = np.array([[0, 1, 1, 1, 1]], dtype=bool)208209        self.assertTrue(np.array_equal(neighborhood.get_mask(), mask))210211    def test_get_mask_case_2(self):212        """213        Este metodo testea el metodo get_mask de la clase RightSideNeighborhood214        """215        neighborhood = RightSideNeighborhood(3, inclusive=True)216        mask = np.array([[1, 1, 1, 1]], dtype=bool)217218        self.assertTrue(np.array_equal(neighborhood.get_mask(), mask))219220    def test_get_offset_case_1(self):221        """222        Este metodo testea el metodo get_mask de la clase RightSideNeighborhood223        """224        neighborhood = RightSideNeighborhood(4)225        offset = (0, 0)226227        self.assertEqual(neighborhood.get_offset(), offset)228229230class TestBothSideNeighborhood(unittest.TestCase):231    """232    Tests para BothSideNeighborhood233    """234235    def test_get_mask_case_1(self):236        """237        Este metodo testea el metodo get_mask de la clase238        BothSideNeighborhood239        """240        neighborhood = BothSideNeighborhood(4, 3, inclusive=False)241        # son 5 entradas en el array porque se cuenta a la celula como un242        # vecino243        mask = np.array([[1, 1, 1, 1, 0, 1, 1, 1]], dtype=bool)244245        self.assertTrue(np.array_equal(neighborhood.get_mask(), mask))246247    def test_get_mask_case_2(self):248        """249        Este metodo testea el metodo get_mask de la clase250        BothSideNeighborhood251        """252        neighborhood = BothSideNeighborhood(3, 4, inclusive=True)253        mask = np.array([[1, 1, 1, 1, 1, 1, 1, 1]], dtype=bool)254255        self.assertTrue(np.array_equal(neighborhood.get_mask(), mask))256257    def test_get_offset_case_1(self):258        """259        Este metodo testea el metodo get_mask de la clase260        BothSideNeighborhood261        """262        neighborhood = BothSideNeighborhood(4, 3)263        offset = (0, -4)264265        self.assertEqual(neighborhood.get_offset(), offset)266267    def test_get_offset_case_2(self):268        """269        Este metodo testea el metodo get_mask de la clase
...splits.py
Source:splits.py  
...19    for c in range(data.y.max() + 1):20        class_idx = development_idx[np.where(data.y[development_idx].cpu() == c)[0]]21        train_idx.extend(rnd_state.choice(class_idx, min(num_per_class, ceil(len(class_idx) * 0.5)), replace=False))22    val_idx = [i for i in development_idx if i not in train_idx]23    def get_mask(idx):24        mask = torch.zeros(num_nodes, dtype=torch.bool)25        mask[idx] = 126        return mask27    data.train_mask = get_mask(train_idx)28    data.val_mask = get_mask(val_idx)29    data.test_mask = get_mask(test_idx)30    return data31    32def set_train_val_test_split_frac(seed: int, data: Data, val_frac: float, test_frac: float):33    num_nodes = data.y.shape[0]34    val_size = ceil(val_frac * num_nodes)35    test_size = ceil(test_frac * num_nodes)36    train_size = num_nodes - val_size - test_size37    nodes = list(range(num_nodes))38    # Take same test set every time using development seed for robustness39    random.seed(development_seed)40    random.shuffle(nodes)41    test_idx = sorted(nodes[:test_size])42    nodes = [x for x in nodes if x not in test_idx]43    # Take train / val split according to seed44    random.seed(seed)45    random.shuffle(nodes)46    train_idx = sorted(nodes[:train_size])47    val_idx = sorted(nodes[train_size:])48    49    assert len(train_idx) + len(val_idx) + len(test_idx) == num_nodes50    def get_mask(idx):51        mask = torch.zeros(num_nodes, dtype=torch.bool)52        mask[idx] = 153        return mask54    data.train_mask = get_mask(train_idx)55    data.val_mask = get_mask(val_idx)56    data.test_mask = get_mask(test_idx)57    return data58# def set_train_val_test_split_classic(seed: int, data: Data, val_frac: float, test_frac: float):59#     random.seed(seed)60#     num_nodes = data.y.shape[0]61#     val_size = ceil(val_frac * num_nodes)62#     test_size = ceil(test_frac * num_nodes)63#     train_size = num_nodes - val_size - test_size64#     nodes = list(range(num_nodes))65#     random.shuffle(nodes)66#     train_idx = sorted(nodes[:train_size])67#     val_idx = sorted(nodes[train_size:train_size+val_size])68#     test_idx = sorted(nodes[train_size+val_size:])69#     def get_mask(idx):70#         mask = torch.zeros(num_nodes, dtype=torch.bool)71#         mask[idx] = 172#         return mask73#     data.train_mask = get_mask(train_idx)74#     data.val_mask = get_mask(val_idx)75#     data.test_mask = get_mask(test_idx)76#     return data77    78# def set_train_val_test_split_robust(seed: int, data: Data, val_frac: float, test_frac: float):79#     num_nodes = data.y.shape[0]80#     val_size = ceil(val_frac * num_nodes)81#     test_size = ceil(test_frac * num_nodes)82#     train_size = num_nodes - val_size - test_size83#     nodes = list(range(num_nodes))84#     # Take same test set every time using development seed for robustness85#     random.seed(development_seed)86#     random.shuffle(nodes)87#     test_idx = sorted(nodes[:test_size])88#     nodes = [x for x in nodes if x not in test_idx]89#     # Take train / val split according to seed90#     random.seed(seed)91#     random.shuffle(nodes)92#     train_idx = sorted(nodes[:train_size])93#     val_idx = sorted(nodes[train_size:])94    95#     assert len(train_idx) + len(val_idx) + len(test_idx) == num_nodes96#     def get_mask(idx):97#         mask = torch.zeros(num_nodes, dtype=torch.bool)98#         mask[idx] = 199#         return mask100#     data.train_mask = get_mask(train_idx)101#     data.val_mask = get_mask(val_idx)102#     data.test_mask = get_mask(test_idx)103#     return data104# def set_train_val_test_split(105#     seed: int, data: Data, num_development: int = 1500, num_per_class: int = 20106# ) -> Data:107#     rnd_state = np.random.RandomState(development_seed)108#     num_nodes = data.y.shape[0]109#     development_idx = rnd_state.choice(num_nodes, num_development, replace=False)110#     test_idx = [i for i in np.arange(num_nodes) if i not in development_idx]111#     train_idx = []112#     rnd_state = np.random.RandomState(seed)113#     for c in range(data.y.max() + 1):114#         class_idx = development_idx[np.where(data.y[development_idx].cpu() == c)[0]]115#         train_idx.extend(116#             rnd_state.choice(117#                 class_idx, min(num_per_class, int(len(class_idx) * 0.7)), replace=False118#             )119#         )120#     val_idx = [i for i in development_idx if i not in train_idx]121#     def get_mask(idx):122#         mask = torch.zeros(num_nodes, dtype=torch.bool)123#         mask[idx] = 1124#         return mask125#     data.train_mask = get_mask(train_idx)126#     data.val_mask = get_mask(val_idx)127#     data.test_mask = get_mask(test_idx)128#     return data129# def set_train_val_test_split_webkb(130#     seed: int,131#     data: Data,132#     num_development: int = 1500,133#     num_per_class: int = 20,134#     train_proportion: float = None,135# ) -> Data:136#     rnd_state = np.random.RandomState(development_seed)137#     num_nodes = data.y.shape[0]138#     development_idx = rnd_state.choice(num_nodes, num_development, replace=False)139#     test_idx = [i for i in np.arange(num_nodes) if i not in development_idx]140#     rnd_state = np.random.RandomState(seed)141#     if train_proportion:142#         train_idx = rnd_state.choice(143#             development_idx, int(train_proportion * len(development_idx)), replace=False144#         )145#     else:146#         train_idx = []147#         for c in range(data.y.max() + 1):148#             class_idx = development_idx[np.where(data.y[development_idx].cpu() == c)[0]]149#             train_idx.extend(rnd_state.choice(class_idx, num_per_class, replace=False))150#     val_idx = [i for i in development_idx if i not in train_idx]151#     def get_mask(idx):152#         mask = torch.zeros(num_nodes, dtype=torch.bool)153#         mask[idx] = 1154#         return mask155#     data.train_mask = get_mask(train_idx)156#     data.val_mask = get_mask(val_idx)157#     data.test_mask = get_mask(test_idx)...test_boolean_mask.py
Source:test_boolean_mask.py  
...9LOGGING = False10MASK_SIZE = 1611class TestBooleanMasks(unittest.TestCase):12    def test_boolean_mask_is_all_false(self):13        self.assertFalse(get_mask(MASK_SIZE, type='empty').any())14    def test_boolean_mask_is_all_true(self):15        self.assertTrue(get_mask(MASK_SIZE, type='full').all())16    def test_boolean_mask_random(self):17        mask = get_mask(MASK_SIZE, type='random')18        print(f'A random mask is {mask}\n')19        self.assertTrue(True)20    def test_operator_and__on_boolean_mask(self):21        empty_mask = get_mask(MASK_SIZE, type='empty')22        full_mask = get_mask(MASK_SIZE, type='full')23        np.testing.assert_array_equal(empty_mask, np.logical_and(empty_mask, full_mask))24    def test_operator_or__on_boolean_mask(self):25        empty_mask = get_mask(MASK_SIZE, type='empty')26        full_mask = get_mask(MASK_SIZE, type='full')27        np.testing.assert_array_equal(full_mask, np.logical_or(empty_mask, full_mask))28    def test_boolean_mask_for_half(self):29        exp_mask = np.array([True, True, False, False])30        act_mask_0 = get_mask(4, type='half_0')31        act_mask_1 = get_mask(4, type='half_1')32        self.assertFalse(np.logical_xor(act_mask_0, exp_mask).all())33        self.assertFalse(np.logical_xor(act_mask_1, np.logical_not(exp_mask)).all())34    def test_boolean_operator_and_mask_repetitively (self):35        mask_set = self.get_set()36        b = bool_and(get_mask(MASK_SIZE, type='random'), get_mask(MASK_SIZE, type='random'))37        for i in range(100):38            b = bool_and(b, get_mask(MASK_SIZE, type='random'))39            if LOGGING:40                print(f'After multiple operation we have {b}')41        self.assertTrue(True)42    def test_random_boolean_operator_and_mask_repetitively (self):43        function_set = self.get_functions()44        function = random.choice(function_set)45        b = function(random.choice(get_mask(MASK_SIZE, type='random')), get_mask(MASK_SIZE, type='random'))46        for i in range(100):47            print(b)48            function = random.choice(function_set)49            if function == bool_not:50                b = function(b)51            else:52                b = function(b, get_mask(MASK_SIZE, type='random'))53        if LOGGING:54            print(f'After multiple operation we have {b}')55        self.assertTrue(True)56    @staticmethod57    def get_set():58        empty_mask = get_mask(MASK_SIZE, type='empty')59        full_mask = get_mask(MASK_SIZE, type='full')60        act_mask_0 = get_mask(MASK_SIZE, type='half_0')61        act_mask_1 = get_mask(MASK_SIZE, type='half_1')62        return [empty_mask, full_mask, act_mask_0, act_mask_1]63    @staticmethod64    def get_functions():65        return [bool_and, bool_or, bool_xor, bool_not]66    def test_get_mask_from_string_using_1111(self):67        full_mask = get_mask(4, type='full')68        np.testing.assert_array_equal(full_mask, get_mask_from_string("1111"))69    def test_get_mask_from_string_using_0000(self):70        empty_mask = get_mask(4, type='empty')71        np.testing.assert_array_equal(empty_mask, get_mask_from_string("0000"))72    def test_get_mask_from_string_using_1100(self):73        half_0_mask = get_mask(4, type='half_0')74        np.testing.assert_array_equal(half_0_mask, get_mask_from_string("1100"))75    def test_get_mask_from_string_using_0011(self):76        half_1_mask = get_mask(4, type='half_1')77        np.testing.assert_array_equal(half_1_mask, get_mask_from_string("0011"))78    def test_mask_to_string_from_1111(self):79        full_mask = get_mask(4, type='full')80        self.assertEqual("1111", mask_to_string(full_mask))81    def test_mask_to_string_from_0000(self):82        empty_mask = get_mask(4, type='empty')83        self.assertEqual("0000", mask_to_string(empty_mask))84    def test_mask_to_string_from_1100(self):85        half_0_mask = get_mask(4, type='half_0')86        self.assertEqual("1100", mask_to_string(half_0_mask))87    def test_mask_to_string_from_0011(self):88        half_1_mask = get_mask(4, type='half_1')...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
