Best Python code snippet using avocado_python
methods.py
Source:methods.py  
...77        self._model = create_instance(model)78        self._model.fc = nn.Linear(2048, 7, bias=False)79        self._optimizer = create_instance(optimizer, params=self._model.parameters())80        self._criterion = create_instance(criterion) 81        self._plugins = self.initialize_plugins()82    83    @property84    def model(self):85        return self._model86    87    @property88    def optimizer(self):89        return self._optimizer90    91    @property92    def criterion(self):93        return self._criterion94    95    @property96    def plugins(self):97        return self._plugins98    99    def initialize_plugins(self):100        return ClassStrategyPlugin()101    102    103class EWC(object):104    def __init__(self, 105                 model: edict,106                 optimizer: edict,107                 criterion: edict108                 ):109        110        self._model = create_instance(model)111        self._model.fc = nn.Linear(2048, 7, bias=False)112        self._optimizer = create_instance(optimizer, params=self._model.parameters())113        self._criterion = create_instance(criterion) 114        self._plugins = self.initialize_plugins()115    116    @property117    def model(self):118        return self._model119    120    @property121    def optimizer(self):122        return self._optimizer123    124    @property125    def criterion(self):126        return self._criterion127    128    @property129    def plugins(self):130        return self._plugins131    132    def initialize_plugins(self):133        return EWCPlugin(ewc_lambda=0.4, decay_factor=0.1, mode="online")134class Replay(object):135    def __init__(self, 136                 model: edict,137                 optimizer: edict,138                 criterion: edict,139                 mem_size: int,140                 storage_policy: dict,141                 selection_strategy: dict=None,142                 features_based: bool=False143                 ):144        145        self._model = create_instance(model)146        self._model.fc = nn.Linear(2048, 7, bias=False)147        self._optimizer = create_instance(optimizer, params=self._model.parameters())148        self._criterion = create_instance(criterion) 149        self._mem_size = mem_size150        151        # if features based exemplar strategy152        # feeding model and its layername for features extractor153        if features_based:154            self._selection_strategy = create_instance(selection_strategy, model=self._model) if not selection_strategy is None else None155        else:    156            self._selection_strategy = create_instance(selection_strategy) if not selection_strategy is None else None157        158        # create storage policy with selection strategy if pre-defined159        if self._selection_strategy:160            try:161                self._storage_policy = create_instance(storage_policy, selection_strategy=self._selection_strategy)162                self._storage_policy.ext_mem = dict()163                print(f"selection strategy: {self._selection_strategy}")164            except:165                self._storage_policy = create_instance(storage_policy)166                self._storage_policy.ext_mem = dict()167                print(f"Selection strategy: None")168        else:169            print(f"Selection strategy: None")170            self._storage_policy = create_instance(storage_policy)171            self._storage_policy.ext_mem = dict()172            173        self._plugins = self.initialize_plugins()174    175    @property176    def model(self):177        return self._model178    179    @property180    def optimizer(self):181        return self._optimizer182    183    @property184    def criterion(self):185        return self._criterion186    187    @property188    def plugins(self):189        return self._plugins190    191    def initialize_plugins(self):192        return ReplayPlugin(self._mem_size, self._storage_policy)193    194    195class SynapticIntelligence(object):196    def __init__(self, 197                 model: edict,198                 optimizer: edict,199                 criterion: edict,200                 si_lambda: float,201                 excluded_parameters: str="fc"202                 ):203        204        self._model = create_instance(model)205        self._model.fc = nn.Linear(2048, 7, bias=False)206        self._optimizer = create_instance(optimizer, params=self._model.parameters())207        self._criterion = create_instance(criterion) 208        self._si_lambda = si_lambda209        self._excluded_parameters = excluded_parameters210        self._plugins = self.initialize_plugins()211    212    @property213    def model(self):214        return self._model215    216    @property217    def optimizer(self):218        return self._optimizer219    220    @property221    def criterion(self):222        return self._criterion223    224    @property225    def plugins(self):226        return self._plugins227    228    def initialize_plugins(self):229        return SynapticIntelligencePlugin(si_lambda=self._si_lambda, 230                                          excluded_parameters=self._excluded_parameters)231        232class AGEM(object):233    def __init__(self, 234                 model: edict,235                 optimizer: edict,236                 criterion: edict,237                 **kwargs238                 ):239        240        self._model = create_instance(model)241        self._model.fc = nn.Linear(2048, 7, bias=False)242        self._optimizer = create_instance(optimizer, params=self._model.parameters())243        self._criterion = create_instance(criterion) 244        self._kwargs = kwargs245        self._plugins = self.initialize_plugins()246    247    @property248    def model(self):249        return self._model250    251    @property252    def optimizer(self):253        return self._optimizer254    255    @property256    def criterion(self):257        return self._criterion258    259    @property260    def plugins(self):261        return self._plugins262    263    def initialize_plugins(self):264        return AGEMPlugin(**self._kwargs)265    266    267    268class LwF(object):269    def __init__(self, 270                 model: edict,271                 optimizer: edict,272                 criterion: edict,273                 ):274        275        self._model = create_instance(model)276        self._model.fc = nn.Linear(2048, 7, bias=False)277        self._optimizer = create_instance(optimizer, params=self._model.parameters())278        self._criterion = create_instance(criterion) 279        self._plugins = self.initialize_plugins()280    281    @property282    def model(self):283        return self._model284    285    @property286    def optimizer(self):287        return self._optimizer288    289    @property290    def criterion(self):291        return self._criterion292    293    @property294    def plugins(self):295        return self._plugins296    297    def initialize_plugins(self):298        return LwFPlugin()299    300    301    302class CoPE(object):303    def __init__(self, 304                 model: edict,305                 optimizer: edict,306                 criterion: edict,307                 **kwargs308                 ):309        310        self._model = create_instance(model)311        self._model.fc = nn.Linear(2048, 7, bias=False)312        self._optimizer = create_instance(optimizer, params=self._model.parameters())313        self._criterion = create_instance(criterion) 314        self._kwargs = kwargs315        self._plugins = self.initialize_plugins()316    317    @property318    def model(self):319        return self._model320    321    @property322    def optimizer(self):323        return self._optimizer324    325    @property326    def criterion(self):327        return self._criterion328    329    @property330    def plugins(self):331        return self._plugins332    333    def initialize_plugins(self):334        return CoPEPlugin(**self._kwargs)335    336    337class CWRStar(object):338    def __init__(self, 339                 model: edict,340                 optimizer: edict,341                 criterion: edict,342                 **kwargs343                 ):344        345        self._model = create_instance(model)346        self._model.fc = nn.Linear(2048, 7, bias=False)347        self._optimizer = create_instance(optimizer, params=self._model.parameters())348        self._criterion = create_instance(criterion) 349        self._kwargs = kwargs350        self._plugins = self.initialize_plugins()351    352    @property353    def model(self):354        return self._model355    356    @property357    def optimizer(self):358        return self._optimizer359    360    @property361    def criterion(self):362        return self._criterion363    364    @property365    def plugins(self):366        return self._plugins367    368    def initialize_plugins(self):...detect_secrets.py
Source:detect_secrets.py  
...65    66        lineNum += 167    68    return json.dumps(secrets)69def initialize_plugins(hex_limit, base64_limit,exclude_lines_regex=None):70    plugins = []71    for pluginClass in import_plugins(()).values():72        plugins.append(pluginClass(base64_limit=base64_limit,hex_limit=hex_limit, exclude_lines_regex=exclude_lines_regex))73    return tuple(plugins)74    75def lambda_handler(event, context):76    # TODO implement77    78    try:79        data = event["data"]80    except KeyError as e:81        errorMsg = "Error(s): Attribute " + str(e) + " is missing in input data"82        return {83            'result': errorMsg84        }85        86    #initialise plugins87    try:88        exclude_lines_regex = None89        90        if("exclude_lines_regex" in event):91            exclude_lines_regex=event["exclude_lines_regex"]92        93        94        if("base64_limit" in event and "hex_limit" in event):95            plugins = initialize_plugins(hex_limit=event["hex_limit"],base64_limit=event["base64_limit"],exclude_lines_regex=exclude_lines_regex)96        elif("base64_limit" in event):97            plugins = initialize_plugins(base64_limit=event["base64_limit"],hex_limit=hex_limit,exclude_lines_regex=exclude_lines_regex)98        elif("hex_limit" in event):99            plugins = initialize_plugins(hex_limit=event["hex_limit"],base64_limit=base64_limit,exclude_lines_regex=exclude_lines_regex)100        else:101            plugins = initialize_plugins(base64_limit=base64_limit,hex_limit=hex_limit, exclude_lines_regex=exclude_lines_regex)102        103    except ValueError as e:104        return {105            'result': "Error(s): invalid hex_limt/base64_limit" 106        }107    except TypeError as e:108        return {109            'result': "Error(s): " + str(e)110        }111        112    if("mode" in event):113        if(event['mode'] == 'debug'):114            result = scan_secrets(data,plugins)115            return {116                'result' : result117            }118    result = scan_secrets_counts(data,plugins)119        120    return {121        'result': result122       123    }124# if __name__ == "__main__":125#     event = {126#   "data": "AWSsecret = AKIA1212121212121212\nsecret = AYje346w846mgvitmon2amz02awa8bjg3g",127#   "hex_limit": 1,128#  "base64_limit": 1,129#  "exclude_lines_regex" : "AKIA"130# }131#     x = lambda_handler(event,"")132#     print(x)133#     # print(x)134#     # plugins = initialize_plugins(1,1, "12")135#     # x = 'AWSsecret = AKIA1212121212121212\nsecret = AYje346w846mgvitmon2amz02awa8bjg3g'136#     # result = scan_screts(x, plugins)137#     # print(result)...__init__.py
Source:__init__.py  
...11    app = initialize_flask_app()12    app.config.from_object(config)13    with app.app_context():14        # Initialize Plugins15        initialize_plugins(app)16        # Register blueprints17        register_blueprints(app)18        register_restful_api(app)19        configure_database(app)...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
