Best Python code snippet using avocado_python
DataGatherThread.py
Source:DataGatherThread.py  
1'''2Created on Jul 31, 20203@author: duicul4'''5import threading6import os7from moviepy.video.io.VideoFileClip import VideoFileClip8import traceback9class DataGatherThread (threading.Thread):10    11    def __init__(self, files,measure_duration,thread_no):12        threading.Thread.__init__(self)13        self.files = files # 0-file_name 1-fullpath 2-duration 3-size14        self.measure_duration = measure_duration15        self.thread_no=thread_no16        17    def video_len(self,path,measure_len):18        if not measure_len:19            return False20        try:21            clip = VideoFileClip(path)22        except Exception:23            #print(path)24            #print(str(traceback.format_exc()))25            return False26        if clip is None:27            return False28        len_vid=clip.duration29        #print(len_vid)30        if len_vid is None:31            return False32        clip.reader.close()33        if clip.audio is None:34            return False35        else:36            clip.audio.reader.close_proc()37        return len_vid38    39    40    def gather_data(self,file_range_search,measure_duration):41        #if range_search[len(range_search)-1]>=len(self.file_data):42        #    return43        44        ret_file_data=[]45        for file in file_range_search:46            #print(self.file_data[i][1])47            file[2]=self.video_len(file[1],measure_duration)48            file[3]=os.path.getsize(file[1])49            #print(file)50            ret_file_data.append(file)51        52        self.files=ret_file_data53        #print(self.files)54    55    def run(self):56        print("Starting: "+str(len(self.files))+" files no:"+str(self.thread_no))57        self.gather_data(self.files, self.measure_duration)58        print("Finish: "+" no: "+str(self.thread_no))59if __name__ == '__main__':...experiment_10_post_sim_plotting.py
Source:experiment_10_post_sim_plotting.py  
1from brian2.units import *2from echo_time import *3import pickle4import scipy.io as spio5import matplotlib.pyplot as plt6import power_spectral_density as psd7fname = "experiment_data/exp10_20sec.pickle"8echo = echo_start("Reading data from {}... ".format(fname))9try:10    with open(fname, 'rb') as f:11        DATA = pickle.load(f)12except Exception as e:13    print('Error', e)14    exit()15echo_end(echo)16X = DATA['X']17Y = DATA['Y']18duration = DATA['duration']/ms19echo = echo_start("Post-processing and plotting... \n")20MEASURE_START = 100021MEASURE_DURATION = 50022print("\t{:,} excitatory neuron spikes in total".format(len(X)))23tt = time.time()24X1, Y1 = [], []25for spike_t, spike_idx in zip(X, Y):26    if MEASURE_START <= spike_t < MEASURE_START + MEASURE_DURATION and \27            spike_idx < 3*40:28        X1.append(spike_t)29        Y1.append(spike_idx)30print('\tCollect relevant spikes: {}s'.format(time.time() - tt))31#X, Y = M.t/ms, M.i32X, Y = X1, Y133tt = time.time()34dt = 10 # ms35shift = 5 # ms36total_steps = int(duration/(shift*ms))37ma, time_scale = psd.moving_average(X, dt, shift, total_steps, True)38print('\tCalculate moving average: {}s'.format(time.time() - tt))39tt = time.time()40X2, Y2 = [], []41for ma_val, t in zip(ma, time_scale):42    if MEASURE_START <= t[0] < MEASURE_START + MEASURE_DURATION:43        Y2.append(ma_val)44        X2.append(t[0])45print('\tCollect relvant moving average data points: {}s'.format(time.time() - tt))46plt.subplot(211)47plt.plot(X1, Y1, '.b')48plt.ylabel('Neuron Index')49plt.xlabel('Simulation Time (ms)')50plt.subplot(212)51plt.plot(X2, Y2)52plt.xlabel('Simulation Time (ms)')53plt.ylabel('Mean firing rate')54echo_end(echo)55plt.show()...main_without_esp32.py
Source:main_without_esp32.py  
1from imu import gy8012import time3from plot import plot_trajectory, fft, plot_trajectory_attenuated4if __name__ == '__main__':5    sensor = gy801()6    7    MEASURE_DURATION = 5 # unit: s8    df = sensor.measure_complementary(MEASURE_DURATION)9    print(df)10    freq = MEASURE_DURATION / len(df)11    plot_trajectory(df, freq)12    df = fft(df, freq)...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
