Best Python code snippet using avocado_python
variables_baptism.py
Source:variables_baptism.py  
...39    if list_of_names is None:40        list_of_names = [prop_obj.lean_data["name"] for prop_obj in PO.ProofStatePO.context_dict.values()]41    good_name = None42    if not hasattr(math_type, name_scheme):43        init_name_scheme(math_type, list_of_names)44    while good_name is None:45        for name in math_type.name_scheme:46            if name not in list_of_names:47                good_name = name48            math_type.name_scheme.remove(name)49        init_name_scheme(math_type, list_of_names)50    return good_name51def init_name_scheme(math_type: PO.PropObj, list_of_names: list, name_prescheme=None):52    """53    determine a list of variable names and attribute it to math_type.name_scheme54    the main sheme is the following:55    first determine the base letter, and second add a decoration (prime or index or nothing)56    - for elements (ie the type of math_type is "Type"), if there is a hint_set which is an upper case letter,57    the base letter is the corresponding lower case letter58    if there is no variable of type math_type, then choose the name according to59    :param math_type: a mathematical type60    :param list_of_names: the list of all current variables61    :param name_prescheme: a hint for naming new variables62    name_prescheme, if not None, is a list of strings of one of the following form:63        - a letter of the latin alphabet, in lower or upper case ;64        - a letter followed by "-", meaning all letters starting from the given one in the alphabetic order65        - an interval of letters, e.g. "[a-e]" or "[A-E]"...gpu_lists.py
Source:gpu_lists.py  
1def get_nvidia_gtx_gpu():2    name_scheme = {"prefix": "gtx",3                   "generation_max": 10,4                   "perf_tier_max": 8,5                   "revision": 0,6                   "suffix": "Ti", }7    gpus = []8    listing = True9    generation = 510    while listing:11        if generation == (name_scheme["generation_max"]+6):12            listing = False1314        perf_tier = 515        while perf_tier <= name_scheme["perf_tier_max"]:16            if generation == 8:17                break18            elif generation == 16:19                if perf_tier > 6:20                    break2122            suffix = 023            series = "{} {}{}{}".format(name_scheme["prefix"], generation, perf_tier, name_scheme["revision"])24            gpus.append(series)25            suffix += 1 26            if suffix == 1:27                series = "{} {}{}{} {}".format(name_scheme["prefix"], generation, perf_tier, name_scheme["revision"], name_scheme["suffix"])28                gpus.append(series)29            perf_tier += 130        generation += 131        if generation > name_scheme["generation_max"]:32            generation = 163334    return gpus353637def get_nvidia_rtx_gpu():38    name_scheme = {"prefix": "rtx",39                    "generation_min": 20,40                   "generation_max": 30,41                   "perf_tier_min": 6,42                   "perf_tier_max": 9,                   43                   "revision": 0,44                   "suffix": "Ti"}45    gpus = []46    listing = True47    generation = name_scheme["generation_min"]48    while listing:49        perf_tier = name_scheme["perf_tier_min"]5051        while perf_tier <= name_scheme["perf_tier_max"]:52            53            if perf_tier == name_scheme["perf_tier_max"] and generation == name_scheme["generation_min"]:54                break55            56            if perf_tier == name_scheme["perf_tier_max"]:57                series = "{} {}{}{}".format(name_scheme["prefix"], generation, perf_tier, name_scheme["revision"])58                gpus.append(series)59            else:60                series = "{} {}{}{}".format(name_scheme["prefix"], generation, perf_tier, name_scheme["revision"])61                gpus.append(series)62                series = "{} {}{}{} {}".format(name_scheme["prefix"], generation, perf_tier, name_scheme["revision"], name_scheme["suffix"])63                gpus.append(series)64            perf_tier += 16566        generation += 106768        if generation > name_scheme["generation_max"]:69            listing = False7071    return gpus727374def get_amd_gpu():75    amd = [76        "rx 460","rx 470", "rx 480", 77        "rx 550", "rx 560", "rx 570", "rx 580",78        "rx 5500", "rx 5500 xt", "rx 5600", "rx 5600 xt", "rx 5700", "rx 5700 xt",79        "rx 6600", "rx 6600 xt", "rx 6700 xt", "rx 6800", "rx 6800 xt", "rx 6900 xt" 80        ]81        82    return amd83            84858687if __name__ == '__main__':88    gpu_lists = []89    nvidia_gtx = get_nvidia_gtx_gpu()90    nvidia_rtx = get_nvidia_rtx_gpu()91
...solver.py
Source:solver.py  
1import numpy as np2import matplotlib.pyplot as plt3from .utils import create_dir4class ODESim:5    def __init__(self, times, schemes, model, init_value, fig_dir=None):6        # Time related variables7        self.times = times8        self.ntimes = len(times)9        self.dt = times[1] - times[0]10        # Model and schemes11        self.model = model12        self.schemes = schemes13        self.nschemes = len(schemes)14        # variable of interest15        self.v = np.zeros((self.nschemes, self.ntimes, self.model.nd))16        self.v0 = init_value17        # Figures directory18        if not fig_dir is None:19            self.fig_dir = f'figures/{fig_dir}/'20            create_dir(self.fig_dir)21    22    def forwardEuler(self, v):23        """ Use model to apply forward Euler scheme """24        v[0] = self.v025        for i in range(1, self.ntimes):26            v[i] = v[i - 1] + self.dt * self.model.f(v[i - 1], self.times[i - 1])27    28    def midpoint(self, v):29        """ Use model to apply midpoint formula """30        v[0] = self.v031        v[1] = v[0] + self.dt * self.model.f(v[0], self.times[0])32        for i in range(2, self.ntimes):33            v[i] = v[i - 2] + 2 * self.dt * self.model.f(v[i - 1], self.times[i - 1])34    35    def multi_step2(self, v):36        """ Most accurate explicit 2multistep method """37        v[0] = self.v038        v[1] = v[0] + self.dt * self.model.f(v[0], self.times[0])39        for i in range(2, self.ntimes):40            v[i] = - 4 * v[i - 1] + 5 * v[i - 1] + self.dt * \41                        (4 * self.model.f(v[i - 1], self.times[i - 1]) + 2 * self.model.f(v[i - 2], self.times[i - 2]))42    43    def backwardEuler(self, v):44        """ Only works with stiff problem for now """45        v[0] = self.v046        for i in range(1, self.ntimes):47            v[i] = self.model.fbackwardEuler(v[i - 1], self.times[i - 1], self.dt)48        49    def trapezoidal(self, v):50        """ Only works with nonlinear problem for now """51        v[0] = self.v052        for i in range(1, self.ntimes):53            v[i] = self.model.ftrapez(v[i - 1], self.times[i - 1], self.dt)54        print(v.shape)55    56    def run_schemes(self):57        """ Apply scheme and plot the results """58        for i_scheme, name_scheme in enumerate(self.schemes):59            scheme = getattr(self, name_scheme)60            scheme(self.v[i_scheme, :])61    62    def plot(self, figname=None):63        for i_scheme, name_scheme in enumerate(self.schemes):64            if figname is None:65                self.model.plot(self.times, self.v[i_scheme, :], f'{name_scheme} - dt = {self.dt:.2e}', self.fig_dir + name_scheme)66            else:...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
