Best Python code snippet using fMBT_python
app.py
Source:app.py  
1#!/usr/bin/env python2# coding: utf-83# In[1]:4import numpy as np5from flask import Flask,request,jsonify,render_template6import pickle7from sklearn.preprocessing import StandardScaler8# In[2]:9app= Flask(__name__)10model=pickle.load(open('model.pkl','rb'))11# In[3]:12@app.route('/')13def home():14    return render_template('index.html')15# In[4]:16State_dict={'Chandigarh': 0,17 'Mizoram': 1,18 'Arunanchal Pradesh': 2,19 'Sikkim': 3,20 'Nagaland': 4,21 'Meghalaya': 5,22 'Manipur': 6,23 'Dadara & Nagar Havelli': 7,24 'Himachal Pradesh': 8,25 'Tripura': 9,26 'Jharkhand': 10,27 'Jammu & Kashmir': 11,28 'Chhattisgarh': 12,29 'Odisha': 13,30 'Madhya Pradesh': 14,31 'Bihar': 15,32 'Rajasthan': 16,33 'Uttarakhand': 17,34 'Karnataka': 18,35 'Gujarat': 19,36 'Telangana': 20,37 'Haryana': 21,38 'Maharashtra': 22,39 'Uttar Pradesh': 23,40 'Assam': 24,41 'West Bengal': 25,42 'Punjab': 26,43 'Puducherry': 27,44 'Tamil Nadu': 28,45 'Andhra Pradesh': 29,46 'Goa': 30,47 'Andaman & Nicobar Island': 31,48 'Kerala': 32,49 'Andamanandnicobarislands': 31,50 'Andhrapradesh': 29,51 'Arunachalpradesh': 2,52 'Dadraandnagarhavelli': 7,53 'Himachalpradesh': 8,54 'Jammuandkashmir': 11,55 'Madhyapradesh': 14,56 'Tamilnadu': 28,57 'Uttarpradesh': 23,58 'Westbengal': 25}59# In[5]:60Dist_dict={'MUMBAI': 0,61 'MAMIT': 1,62 'LEH LADAKH': 2,63 'KINNAUR': 3,64 'LAWNGTLAI': 4,65 'KARGIL': 5,66 'HYDERABAD': 6,67 'CHANDIGARH': 7,68 'KURUNG KUMEY': 8,69 'NAMSAI': 9,70 'SAIHA': 10,71 'KHUNTI': 11,72 'NORTH DISTRICT': 12,73 'RAMGARH': 13,74 'SOUTH GARO HILLS': 14,75 'ANJAW': 15,76 'NORTH GARO HILLS': 16,77 'WEST JAINTIA HILLS': 17,78 'TAWANG': 18,79 'NARAYANPUR': 19,80 'SHOPIAN': 20,81 'LUNGLEI': 21,82 'WEST KAMENG': 22,83 'TIRAP': 23,84 'SOUTH WEST KHASI HILLS': 24,85 'CHAMPHAI': 25,86 'LONGLENG': 26,87 'PALGHAR': 27,88 'UPPER SIANG': 28,89 'UPPER SUBANSIRI': 29,90 'KISHTWAR': 30,91 'EAST KAMENG': 31,92 'LONGDING': 32,93 'KOLASIB': 33,94 'TAMENGLONG': 34,95 'SERCHHIP': 35,96 'CHAMPAWAT': 36,97 'CHANDEL': 37,98 'SRINAGAR': 38,99 'DIBANG VALLEY': 39,100 'KIPHIRE': 40,101 'LOWER SUBANSIRI': 41,102 'EAST JAINTIA HILLS': 42,103 'RUDRA PRAYAG': 43,104 'MON': 44,105 'PAPUM PARE': 45,106 'LAHUL AND SPITI': 46,107 'ZUNHEBOTO': 47,108 'KONDAGAON': 48,109 'MOKOKCHUNG': 49,110 'SOUTH WEST GARO HILLS': 50,111 'BANDIPORA': 51,112 'KODERMA': 52,113 'ARWAL': 53,114 'CHANGLANG': 54,115 'LATEHAR': 55,116 'BAGESHWAR': 56,117 'EAST GARO HILLS': 57,118 'KOHIMA': 58,119 'PEREN': 59,120 'UMARIA': 60,121 'REASI': 61,122 'UKHRUL': 62,123 'PHEK': 63,124 'AIZAWL': 64,125 'RAMBAN': 65,126 'WOKHA': 66,127 'WEST DISTRICT': 67,128 'BOKARO': 68,129 'TUENSANG': 69,130 'EAST DISTRICT': 70,131 'WEST SIANG': 71,132 'DEOGARH': 72,133 'RI BHOI': 73,134 'KOREA': 74,135 'WEST KHASI HILLS': 75,136 'DHALAI': 76,137 'KANDHAMAL': 77,138 'UNAKOTI': 78,139 'KULGAM': 79,140 'GANDERBAL': 80,141 'BENGALURU URBAN': 81,142 'GARHWA': 82,143 'GAJAPATI': 83,144 'RAYAGADA': 84,145 'CHURACHANDPUR': 85,146 'MUNGER': 86,147 'SAHEBGANJ': 87,148 'LOWER DIBANG VALLEY': 88,149 'JHARSUGUDA': 89,150 'ANUPPUR': 90,151 'SHIMLA': 91,152 'SENAPATI': 92,153 'UTTAR KASHI': 93,154 'KORBA': 94,155 'BOUDH': 95,156 'SOUTH DISTRICT': 96,157 'DANG': 97,158 'DHANBAD': 98,159 'EAST SIANG': 99,160 'PITHORAGARH': 100,161 'BISHNUPUR': 101,162 'NUAPADA': 102,163 'NORTH TRIPURA': 103,164 'LOHARDAGA': 104,165 'LOHIT': 105,166 'KHOWAI': 106,167 'THE NILGIRIS': 107,168 'CHATRA': 108,169 'PULWAMA': 109,170 'CHAMBA': 110,171 'PAURI GARHWAL': 111,172 'AGAR MALWA': 112,173 'KULLU': 113,174 'SHEIKHPURA': 114,175 'THOUBAL': 115,176 'SOLAN': 116,177 'BADGAM': 117,178 'JASHPUR': 118,179 'RAJSAMAND': 119,180 'ALIRAJPUR': 120,181 'IMPHAL WEST': 121,182 'SURAJPUR': 122,183 'SIMDEGA': 123,184 'TEHRI GARHWAL': 124,185 'JAMUI': 125,186 'SARAIKELA KHARSAWAN': 126,187 'JAISALMER': 127,188 'JAMTARA': 128,189 'IMPHAL EAST': 129,190 'PAKUR': 130,191 'DANTEWADA': 131,192 'SIROHI': 132,193 'GODDA': 133,194 'DINDORI': 134,195 'SAMBA': 135,196 'Dadara & Nagar Havelli': 136,197 'DUNGARPUR': 137,198 'BALODA BAZAR': 138,199 'PALAMU': 139,200 'NAWADA': 140,201 'SHEOHAR': 141,202 'ANUGUL': 142,203 'DODA': 143,204 'CHAMOLI': 144,205 'KABIRDHAM': 145,206 'UNA': 146,207 'CHIKBALLAPUR': 147,208 'ALMORA': 148,209 'RAIGARH': 149,210 'SUKMA': 150,211 'SHAHDOL': 151,212 'SIRMAUR': 152,213 'GOMATI': 153,214 'DIMAPUR': 154,215 'WEST GARO HILLS': 155,216 'KHAGARIA': 156,217 'MALKANGIRI': 157,218 'PANCHKULA': 158,219 'MANDLA': 159,220 'GARIYABAND': 160,221 'KODAGU': 161,222 'KATHUA': 162,223 'JEHANABAD': 163,224 'KUPWARA': 164,225 'BASTAR': 165,226 'EAST KHASI HILLS': 166,227 'SINGRAULI': 167,228 'KATNI': 168,229 'LAKHISARAI': 169,230 'KHORDHA': 170,231 'PANNA': 171,232 'KANKER': 172,233 'DHAMTARI': 173,234 'RAMANAGARA': 174,235 'GUMLA': 175,236 'TINSUKIA': 176,237 'CHITRAKOOT': 177,238 'AJMER': 178,239 'SIDHI': 179,240 'DHENKANAL': 180,241 'JAJAPUR': 181,242 'SOUTH TRIPURA': 182,243 'BARWANI': 183,244 'WEST TRIPURA': 184,245 'UDHAMPUR': 185,246 'SAMBALPUR': 186,247 'HAZARIBAGH': 187,248 'DEOGHAR': 188,249 'DIMA HASAO': 189,250 'JHABUA': 190,251 'GIRIDIH': 191,252 'SONEPUR': 192,253 'BEGUSARAI': 193,254 'TIKAMGARH': 194,255 'JAGATSINGHAPUR': 195,256 'KENDUJHAR': 196,257 'GADCHIROLI': 197,258 'MUNGELI': 198,259 'MADHUBANI': 199,260 'BANGALORE RURAL': 200,261 'PALI': 201,262 'SURGUJA': 202,263 'UTTAR KANNAD': 203,264 'MAHOBA': 204,265 'SONBHADRA': 205,266 'SEPAHIJALA': 206,267 'DUMKA': 207,268 'SANT RAVIDAS NAGAR': 208,269 'BARAMULLA': 209,270 'VAISHALI': 210,271 'YADGIR': 211,272 'BANSWARA': 212,273 'BHOPAL': 213,274 'SAHARSA': 214,275 'BALOD': 215,276 'MAHASAMUND': 216,277 'DARBHANGA': 217,278 'WEST SINGHBHUM': 218,279 'NEEMUCH': 219,280 'NAYAGARH': 220,281 'RAJNANDGAON': 221,282 'BILASPUR': 222,283 'KOLAR': 223,284 'SUNDARGARH': 224,285 'GAYA': 225,286 'SATNA': 226,287 'JANJGIR-CHAMPA': 227,288 'GONDIA': 228,289 'KENDRAPARA': 229,290 'UDAIPUR': 230,291 'KANGRA': 231,292 'POONCH': 232,293 'DAMOH': 233,294 'ANANTNAG': 234,295 'RAJAURI': 235,296 'KISHANGANJ': 236,297 'BHAGALPUR': 237,298 'BALANGIR': 238,299 'GADAG': 239,300 'JAMMU': 240,301 'JALORE': 241,302 'RANGAREDDI': 242,303 'MANDI': 243,304 'DIBRUGARH': 244,305 'BALAGHAT': 245,306 'BEMETARA': 246,307 'HAMIRPUR': 247,308 'NALANDA': 248,309 'SARAN': 249,310 'CHIKMAGALUR': 250,311 'BARMER': 251,312 'KORAPUT': 252,313 'UDUPI': 253,314 'NABARANGPUR': 254,315 'REWA': 255,316 'PURI': 256,317 'PANCH MAHALS': 257,318 'DHARWAD': 258,319 'DHEMAJI': 259,320 'SHEOPUR': 260,321 'BANKA': 261,322 'KAUSHAMBI': 262,323 'JABALPUR': 263,324 'EAST SINGHBUM': 264,325 'SEONI': 265,326 'SUPAUL': 266,327 'BUXAR': 267,328 'KOPPAL': 268,329 'CHHATARPUR': 269,330 'KALAHANDI': 270,331 'BHILWARA': 271,332 'NAINITAL': 272,333 'LUCKNOW': 273,334 'SAWAI MADHOPUR': 274,335 'MADHEPURA': 275,336 'BHIND': 276,337 'MUZAFFARPUR': 277,338 'KHARGONE': 278,339 'DHOLPUR': 279,340 'BANDA': 280,341 'PATNA': 281,342 'CUTTACK': 282,343 'DATIA': 283,344 'BALESHWAR': 284,345 'BHOJPUR': 285,346 'GANDHINAGAR': 286,347 'TONK': 287,348 'PORBANDAR': 288,349 'BHADRAK': 289,350 'SAMASTIPUR': 290,351 'ASHOKNAGAR': 291,352 'SAGAR': 292,353 'LALITPUR': 293,354 'HAVERI': 294,355 'HARDA': 295,356 'SIWAN': 296,357 'RAIPUR': 297,358 'KARAULI': 298,359 'DAUSA': 299,360 'PURULIA': 300,361 'GWALIOR': 301,362 'SINDHUDURG': 302,363 'KHANDWA': 303,364 'KAIMUR (BHABUA)': 304,365 'JHANSI': 305,366 'MAYURBHANJ': 306,367 'DARJEELING': 307,368 'RAJGARH': 308,369 'GUNA': 309,370 'RANCHI': 310,371 'KATIHAR': 311,372 'BIKANER': 312,373 'DOHAD': 313,374 'JHALAWAR': 314,375 'CHITRADURGA': 315,376 'THANE': 316,377 'ADILABAD': 317,378 'ARARIA': 318,379 'DURG': 319,380 'RATNAGIRI': 320,381 'RATLAM': 321,382 'MIRZAPUR': 322,383 'BELLARY': 323,384 'PATAN': 324,385 'RAICHUR': 325,386 'SHRAVASTI': 326,387 'WASHIM': 327,388 'BETUL': 328,389 'VARANASI': 329,390 'HAILAKANDI': 330,391 'PURNIA': 331,392 'SHIVPURI': 332,393 'MANDSAUR': 333,394 'CHANDAULI': 334,395 'GANJAM': 335,396 'BARGARH': 336,397 'RAISEN': 337,398 'BUNDI': 338,399 'BURHANPUR': 339,400 'KOTA': 340,401 'BHANDARA': 341,402 'MORENA': 342,403 'BARAN': 343,404 'JODHPUR': 344,405 'CHANDRAPUR': 345,406 'INDORE': 346,407 'DEHRADUN': 347,408 'SITAMARHI': 348,409 'CHAMARAJANAGAR': 349,410 'CHURU': 350,411 'CHITTORGARH': 351,412 'DAKSHIN KANNAD': 352,413 'VIDISHA': 353,414 'KAMRUP METRO': 354,415 'PRATAPGARH': 355,416 'GAUTAM BUDDHA NAGAR': 356,417 'SIKAR': 357,418 'TUMKUR': 358,419 'ETAWAH': 359,420 'HOSHANGABAD': 360,421 'AMETHI': 361,422 'SANT KABEER NAGAR': 362,423 'SEHORE': 363,424 'SHAJAPUR': 364,425 'RAIGAD': 365,426 'JALAUN': 366,427 'KADAPA': 367,428 'BHARATPUR': 368,429 'NAGPUR': 369,430 'REWARI': 370,431 'WARDHA': 371,432 'KANPUR DEHAT': 372,433 'AURAIYA': 373,434 'DHAR': 374,435 'AKOLA': 375,436 'JHUNJHUNU': 376,437 'ROHTAS': 377,438 'DEWAS': 378,439 'MAHBUBNAGAR': 379,440 'UNNAO': 380,441 'DHULE': 381,442 'PURBI CHAMPARAN': 382,443 'HASSAN': 383,444 'UJJAIN': 384,445 'MAHESANA': 385,446 'RAE BARELI': 386,447 'SHIMOGA': 387,448 'NANDURBAR': 388,449 'KACHCHH': 389,450 'MAU': 390,451 'AHMADABAD': 391,452 'KANPUR NAGAR': 392,453 'MYSORE': 393,454 'KHEDA': 394,455 'LAKHIMPUR': 395,456 'AMRAVATI': 396,457 'SABAR KANTHA': 397,458 'NAGAUR': 398,459 'GULBARGA': 399,460 'PRAKASAM': 400,461 'KASGANJ': 401,462 'CHHINDWARA': 402,463 'WARANGAL': 403,464 'GURGAON': 404,465 'DAVANGERE': 405,466 'GORAKHPUR': 406,467 'SIDDHARTH NAGAR': 407,468 'GOPALGANJ': 408,469 'NARSINGHPUR': 409,470 'JALPAIGURI': 410,471 'MAHENDRAGARH': 411,472 'VADODARA': 412,473 'BULDHANA': 413,474 'FATEHPUR': 414,475 'NALGONDA': 415,476 'JHAJJAR': 416,477 'HATHRAS': 417,478 'TAPI': 418,479 'JAIPUR': 419,480 'ALLAHABAD': 420,481 'MAINPURI': 421,482 'KURNOOL': 422,483 'HINGOLI': 423,484 'S.A.S NAGAR': 424,485 'BALLIA': 425,486 'FARIDABAD': 426,487 'BIDAR': 427,488 'NARMADA': 428,489 'HANUMANGARH': 429,490 'MEWAT': 430,491 'SULTANPUR': 431,492 'DINAJPUR UTTAR': 432,493 'BIJAPUR': 433,494 'GHAZIPUR': 434,495 'AURANGABAD': 435,496 'NANDED': 436,497 'DINAJPUR DAKSHIN': 437,498 'CHIRANG': 438,499 'AMBEDKAR NAGAR': 439,500 'ALWAR': 440,501 'KANNAUJ': 441,502 'GANGANAGAR': 442,503 'JAMNAGAR': 443,504 'DEORIA': 444,505 'ANAND': 445,506 'FIROZABAD': 446,507 'YAVATMAL': 447,508 'BANAS KANTHA': 448,509 'AMRELI': 449,510 'PARBHANI': 450,511 'MATHURA': 451,512 'KOKRAJHAR': 452,513 'NIZAMABAD': 453,514 'FAIZABAD': 454,515 'PANIPAT': 455,516 'KARBI ANGLONG': 456,517 'CACHAR': 457,518 'JALNA': 458,519 'OSMANABAD': 459,520 'FARRUKHABAD': 460,521 'SURENDRANAGAR': 461,522 'ETAH': 462,523 'KARIMGANJ': 463,524 'KARIMNAGAR': 464,525 'MANDYA': 465,526 'PATHANKOT': 466,527 'JAUNPUR': 467,528 'SIVASAGAR': 468,529 'PALWAL': 469,530 'BANKURA': 470,531 'BAHRAICH': 471,532 'MALDAH': 472,533 'BARABANKI': 473,534 'AZAMGARH': 474,535 'BHIWANI': 475,536 'ROHTAK': 476,537 'NAVSARI': 477,538 'UDALGURI': 478,539 'MAHARAJGANJ': 479,540 'HISAR': 480,541 'VALSAD': 481,542 'ALIGARH': 482,543 'ARIYALUR': 483,544 'RUPNAGAR': 484,545 'RAJKOT': 485,546 'HAPUR': 486,547 'BHAVNAGAR': 487,548 'AGRA': 488,549 'JORHAT': 489,550 'MEDAK': 490,551 'FATEHABAD': 491,552 'BHARUCH': 492,553 'SONIPAT': 493,554 'RAMPUR': 494,555 'BONGAIGAON': 495,556 'PERAMBALUR': 496,557 '24 PARAGANAS NORTH': 497,558 'BALRAMPUR': 498,559 'NASHIK': 499,560 'SAMBHAL': 500,561 'GOALPARA': 501,562 'LATUR': 502,563 'JALGAON': 503,564 'AMBALA': 504,565 'ANANTAPUR': 505,566 'DHUBRI': 506,567 'DARRANG': 507,568 'BASTI': 508,569 'JUNAGADH': 509,570 'KARNAL': 510,571 'UDAM SINGH NAGAR': 511,572 'KAITHAL': 512,573 'JIND': 513,574 'SIRSA': 514,575 'GONDA': 515,576 'FARIDKOT': 516,577 'GUNTUR': 517,578 'BIRBHUM': 518,579 'COOCHBEHAR': 519,580 'BUDAUN': 520,581 'BEED': 521,582 'MANSA': 522,583 'PASHCHIM CHAMPARAN': 523,584 'HARDOI': 524,585 'HOSHIARPUR': 525,586 'NAWANSHAHR': 526,587 'BAGALKOT': 527,588 'MOGA': 528,589 'KARAIKAL': 529,590 'KURUKSHETRA': 530,591 'FATEHGARH SAHIB': 531,592 'BARNALA': 532,593 'SHAHJAHANPUR': 533,594 'BULANDSHAHR': 534,595 'MUKTSAR': 535,596 'KAPURTHALA': 536,597 'MARIGAON': 537,598 'YAMUNANAGAR': 538,599 'SATARA': 539,600 'KUSHI NAGAR': 540,601 'THIRUVALLUR': 541,602 'TARN TARAN': 542,603 'GHAZIABAD': 543,604 'BATHINDA': 544,605 'TUTICORIN': 545,606 'MORADABAD': 546,607 'PILIBHIT': 547,608 'SANGLI': 548,609 'MEDINIPUR WEST': 549,610 'SONITPUR': 550,611 'HARIDWAR': 551,612 'BAKSA': 552,613 'PATIALA': 553,614 'JALANDHAR': 554,615 'AHMEDNAGAR': 555,616 'NADIA': 556,617 'TIRUVANNAMALAI': 557,618 'FAZILKA': 558,619 'BARPETA': 559,620 'KARUR': 560,621 'BARDHAMAN': 561,622 'SPSR NELLORE': 562,623 'AMRITSAR': 563,624 'LUDHIANA': 564,625 'SITAPUR': 565,626 'SHAMLI': 566,627 'KHAMMAM': 567,628 'TIRUCHIRAPPALLI': 568,629 'BAREILLY': 569,630 'PUNE': 570,631 'AMROHA': 571,632 'BAGHPAT': 572,633 'NALBARI': 573,634 'MEDINIPUR EAST': 574,635 'GURDASPUR': 575,636 'HOWRAH': 576,637 'BELGAUM': 577,638 'SOLAPUR': 578,639 'HOOGHLY': 579,640 'SANGRUR': 580,641 'NAGAPATTINAM': 581,642 'GOLAGHAT': 582,643 'FIROZEPUR': 583,644 'MURSHIDABAD': 584,645 'KANCHIPURAM': 585,646 'KAMRUP': 586,647 'SURAT': 587,648 '24 PARAGANAS SOUTH': 588,649 'SAHARANPUR': 589,650 'YANAM': 590,651 'KHERI': 591,652 'CUDDALORE': 592,653 'KOLHAPUR': 593,654 'VILLUPURAM': 594,655 'PONDICHERRY': 595,656 'RAMANATHAPURAM': 596,657 'PUDUKKOTTAI': 597,658 'MEERUT': 598,659 'MAHE': 599,660 'DHARMAPURI': 600,661 'BIJNOR': 601,662 'SIVAGANGA': 602,663 'MADURAI': 603,664 'VIZIANAGARAM': 604,665 'NAMAKKAL': 605,666 'CHITTOOR': 606,667 'KRISHNA': 607,668 'MUZAFFARNAGAR': 608,669 'SALEM': 609,670 'VIRUDHUNAGAR': 610,671 'TIRUNELVELI': 611,672 'THIRUVARUR': 612,673 'NAGAON': 613,674 'ERODE': 614,675 'KANNIYAKUMARI': 615,676 'VELLORE': 616,677 'SOUTH ANDAMANS': 617,678 'NORTH AND MIDDLE ANDAMAN': 618,679 'VISAKHAPATANAM': 619,680 'KRISHNAGIRI': 620,681 'DINDIGUL': 621,682 'THENI': 622,683 'SRIKAKULAM': 623,684 'NORTH GOA': 624,685 'THANJAVUR': 625,686 'SOUTH GOA': 626,687 'WAYANAD': 627,688 'IDUKKI': 628,689 'TIRUPPUR': 629,690 'NICOBARS': 630,691 'COIMBATORE': 631,692 'WEST GODAVARI': 632,693 'PATHANAMTHITTA': 633,694 'EAST GODAVARI': 634,695 'KOTTAYAM': 635,696 'PALAKKAD': 636,697 'ERNAKULAM': 637,698 'KOLLAM': 638,699 'ALAPPUZHA': 639,700 'KASARAGOD': 640,701 'KANNUR': 641,702 'THIRUVANANTHAPURAM': 642,703 'THRISSUR': 643,704 'MALAPPURAM': 644,705 'KOZHIKODE': 645,706 'DADRA AND NAGARHAVELI' :136}707# In[6]:708Season_dict={'Summer': 0,709 'Autumn': 1,710 'Rabi': 2,711 'Kharif': 3,712 'Winter': 4,713 'Wholeyear': 5}714# In[7]:715Crop_dict={'Apple': 0,716 'Pump kin': 1,717 'Snak Guard': 2,718 'Cucumber': 3,719 'Lab-Lab': 4,720 'Plums': 5,721 'Ribed Guard': 6,722 'Litchi': 7,723 'Ber': 8,724 'Beet Root': 9,725 'Other Citrus Fruit': 10,726 'Pear': 11,727 'other fibres': 12,728 'Peas  (vegetable)': 13,729 'Yam': 14,730 'Peach': 15,731 'Ash Gourd': 16,732 'Water Melon': 17,733 'Bitter Gourd': 18,734 'Bottle Gourd': 19,735 'Turnip': 20,736 'Redish': 21,737 'Cond-spcs other': 22,738 'Jobster': 23,739 'Carrot': 24,740 'other misc. pulses': 25,741 'Perilla': 26,742 'Sannhamp': 27,743 'Cauliflower': 28,744 'Cashewnut Processed': 29,745 'Cardamom': 30,746 'Bean': 31,747 'Lentil': 32,748 'Cowpea(Lobia)': 33,749 'Ricebean (nagadal)': 34,750 'Blackgram': 35,751 'Linseed': 36,752 'Jack Fruit': 37,753 'Kapas': 38,754 'Niger seed': 39,755 'Drum Stick': 40,756 'Korra': 41,757 'Pome Granet': 42,758 'Varagu': 43,759 'Other Fresh Fruits': 44,760 'Bhindi': 45,761 'Rajmash Kholar': 46,762 'Horse-gram': 47,763 'Coriander': 48,764 'Sesamum': 49,765 'Small millets': 50,766 'Other Kharif pulses': 51,767 'Beans & Mutter(Vegetable)': 52,768 'Other  Rabi pulses': 53,769 'Moong(Green Gram)': 54,770 'Pome Fruit': 55,771 'Peas & beans (Pulses)': 56,772 'Cabbage': 57,773 'Sweet potato': 58,774 'Other Vegetables': 59,775 'Black pepper': 60,776 'Samai': 61,777 'Other Cereals & Millets': 62,778 'Citrus Fruit': 63,779 'Safflower': 64,780 'Sunflower': 65,781 'Cashewnut': 66,782 'Urad': 67,783 'Turmeric': 68,784 'Dry chillies': 69,785 'Tea': 70,786 'Garlic': 71,787 'Dry ginger': 72,788 'Masoor': 73,789 'Ginger': 74,790 'Cashewnut Raw': 75,791 'Brinjal': 76,792 'Moth': 77,793 'Tobacco': 78,794 'Castor seed': 79,795 'Khesari': 80,796 'Colocosia': 81,797 'Arhar/Tur': 82,798 'Barley': 83,799 'Jute & mesta': 84,800 'Mesta': 85,801 'Sapota': 86,802 'Lemon': 87,803 'Orange': 88,804 'Pineapple': 89,805 'Ragi': 90,806 'Papaya': 91,807 'other oilseeds': 92,808 'Arcanut (Processed)': 93,809 'Onion': 94,810 'Guar seed': 95,811 'Rapeseed &Mustard': 96,812 'Arecanut': 97,813 'Groundnut': 98,814 'Gram': 99,815 'Tomato': 100,816 'Grapes': 101,817 'Jowar': 102,818 'Maize': 103,819 'Bajra': 104,820 'Coffee': 105,821 'Mango': 106,822 'Rubber': 107,823 'Soyabean': 108,824 'Banana': 109,825 'Atcanut (Raw)': 110,826 'Potato': 111,827 'Pulses total': 112,828 'Paddy': 113,829 'Tapioca': 114,830 'Cotton(lint)': 115,831 'Oilseeds total': 116,832 'Rice': 117,833 'Jute': 118,834 'Wheat': 119,835 'Total foodgrain': 120,836 'Sugarcane': 121,837 'Coconut': 122}838# In[8]:839Year_dict={2015: 0,840 1997: 1,841 2001: 2,842 2010: 3,843 2007: 4,844 2006: 5,845 2002: 6,846 1999: 7,847 2009: 8,848 2008: 9,849 2003: 10,850 2000: 11,851 2012: 12,852 2004: 13,853 2005: 14,854 1998: 15,855 2013: 16,856 2014: 17,857 2011: 18,858 2016: 19,859 2017: 20,860 2018: 21,861 2019: 22,862 2020: 23,863 2021: 24,864 2022: 25,865 2023: 26,866 2024: 27,867 2025: 28,868 2026: 29,869 2027: 30,          870 2028: 31,         871 2029: 32,         872 2030: 33,         873 2031: 34,         874 2032: 35,         875 2033: 36,         876 2034: 37,         877 2035: 38,         878 2036: 39,         879 2037: 40,880 2038: 41,       881 2039: 42,       882 2040: 43,       883 2041: 44,       884 2042: 45,       885 2043: 46,       886 2044: 47,       887 2045: 48,888 2046: 49,          889 2047: 50,          890 2048: 51,          891 2049: 52,          892 2050: 53,          893 2051: 54}894       895# In[9]:896a="Andaman & Nicobar Island"897# In[10]:898print(State_dict.get(a))899# In[11]:900import datetime901now = datetime.datetime.now()902check_year=now.year903print(check_year)904predict_year=check_year+2905print('predict_year',predict_year)906standard_to = StandardScaler()907@app.route('/predict',methods=['POST'])908def predict():909    #int_features=[String(x) for x in request.form.values()]910    #final_features =[np.array(int_features)]911    if request.method == 'POST':912        State_Name=request.form['State_Name']913        State_Name1=State_Name914        State_Name=State_Name.capitalize()915        State_Name=State_dict.get(State_Name)916        District_Name  =request.form['District_Name']917        District_Name1=District_Name918        District_Name=District_Name.upper()919        District_Name=Dist_dict.get(District_Name)920        Crop_Year=int(request.form['Crop_Year'])921        Crop_Year_original=Crop_Year922        if Crop_Year<1998:923            Crop_Year1=Crop_Year924            #Crop_Year=1925            Crop_Year2=Crop_Year-2926            Crop_Year7=Crop_Year2927            Crop_Year2=1928            Crop_Year3=Crop_Year-1929            Crop_Year8=Crop_Year3930            Crop_Year3=1931            Crop_Year4=Crop_Year+1932            Crop_Year9=Crop_Year4933            Crop_Year4=1934            Crop_Year5=Crop_Year+2935            Crop_Year10=Crop_Year5936            Crop_Year5=1937            Crop_Year=1938        else:939            Crop_Year1=Crop_Year940            Crop_Year2=Crop_Year-2941            Crop_Year7=Crop_Year2942            Crop_Year3=Crop_Year-1943            Crop_Year8=Crop_Year3944            Crop_Year4=Crop_Year+1945            Crop_Year9=Crop_Year4946            Crop_Year5=Crop_Year+2947            Crop_Year10=Crop_Year5948            if Crop_Year<2052:949                Crop_Year=Year_dict.get(Crop_Year)950            else:951                Crop_Year=55952            if Crop_Year2<2052:953                Crop_Year2=Year_dict.get(Crop_Year2)954            else:955                Crop_Year2=55956            if Crop_Year3<2052:957                Crop_Year3=Year_dict.get(Crop_Year3)958            else:959                Crop_Year3=55960            if Crop_Year4<2052:961                Crop_Year4=Year_dict.get(Crop_Year4)962            else:963                Crop_Year4=55964            if Crop_Year5<2052:965                Crop_Year5=Year_dict.get(Crop_Year5)966            else:967                Crop_Year5=55968        Season=request.form['Season']969        Season1=Season970        Season=Season.capitalize()971        Season=Season_dict.get(Season)972        Crop=request.form['Crop']973        #Crop=Crop.capitalize()974        Crop1=Crop975        if Crop1=='Arhar/Tur':976            crop2='ArharTur'977        elif Crop1=='Castor seed':978            crop2='Castorseed'979        elif Crop1=='Cond-spcs other':980            crop2='Condspcsother'981        elif Crop1=='Cotton(lint)':982            crop2='Cottonlint'983        elif Crop1=='Moong(Green Gram)':984            crop2='MoongGreenGram'985        elif Crop1=='Rapeseed &Mustard':986            crop2='RapeseedMustard'987        else:988            crop2=Crop1989        Crop=Crop_dict.get(Crop)990        Area=float(request.form['Area'])991        Area_in=Area992    print([[State_Name,District_Name,Crop_Year,Season,Crop,Area]] ) 993    print([[State_Name,District_Name,Crop_Year2,Season,Crop,Area]] )994    print([[State_Name,District_Name,Crop_Year3,Season,Crop,Area]] )995    print([[State_Name,District_Name,Crop_Year4,Season,Crop,Area]] )996    print([[State_Name,District_Name,Crop_Year5,Season,Crop,Area]] )997    if Area<10:998        Area1=Area+5999        Area2=Area1+51000        Area3=Area2+51001        Area4=Area3+51002    elif Area<100:1003        Area1=Area+101004        Area2=Area1+101005        Area3=Area2+101006        Area4=Area3+101007    elif Area<1000:1008        Area1=Area+501009        Area2=Area1+501010        Area3=Area2+501011        Area4=Area3+501012    elif Area<10000:1013        Area1=Area+1001014        Area2=Area1+1001015        Area3=Area2+1001016        Area4=Area3+1001017    elif Area>9999:1018        Area1=Area+10001019        Area2=Area1+10001020        Area3=Area2+10001021        Area4=Area3+10001022    1023    prediction=model.predict([[State_Name,District_Name,Crop_Year,Season,Crop,Area]] ) 1024    prediction1=model.predict([[State_Name,District_Name,Crop_Year2,Season,Crop,Area]] )1025    prediction2=model.predict([[State_Name,District_Name,Crop_Year3,Season,Crop,Area]] )1026    prediction3=model.predict([[State_Name,District_Name,Crop_Year4,Season,Crop,Area]] )1027    prediction4=model.predict([[State_Name,District_Name,Crop_Year5,Season,Crop,Area]] )1028    prediction_Area1=model.predict([[State_Name,District_Name,Crop_Year,Season,Crop,Area1]] )1029    prediction_Area2=model.predict([[State_Name,District_Name,Crop_Year,Season,Crop,Area2]] )1030    prediction_Area3=model.predict([[State_Name,District_Name,Crop_Year,Season,Crop,Area3]] )1031    prediction_Area4=model.predict([[State_Name,District_Name,Crop_Year,Season,Crop,Area4]] )1032        1033    1034    1035    print('Crop_Year',Crop_Year_original)1036    if predict_year < Crop_Year_original:1037        prediction=01038        print('year_if')1039        return render_template('index.html',1040                                   prediction_text='The tool supports the prediction for next 2 years',1041                                   state='State_Name :{}'.format(State_Name1),1042                                   district='District_Name :{}'.format(District_Name1),1043                                   year='Crop_Year :{}'.format(Crop_Year1),1044                                   season='Season :{}'.format(Season1),1045                                   crop='Crop :{}'.format(Crop1),1046                                   Area='Area :{} ha'.format(Area_in))1047    #Arhar/Tur1048    if State_Name==30 and Crop==82 or State_Name==10 and Crop==82 or State_Name==6 and Crop==82 or State_Name==3 and Crop==82 :1049        prediction=01050        return render_template('index.html',1051                                   prediction_text='The predicted production of the crop is {} tonne as selected crop is not cultivated in this state'.format(prediction),1052                                   state='State_Name :{}'.format(State_Name1),1053                                   district='District_Name :{}'.format(District_Name1),1054                                   year='Crop_Year :{}'.format(Crop_Year1),1055                                   season='Season :{}'.format(Season1),1056                                   crop='Crop :{}'.format(Crop1),1057                                   Area='Area :{} ha'.format(Area_in))1058    #Banana1059    if State_Name==21 and Crop==109 or State_Name==8 and Crop==109 or State_Name==10 and Crop==109 or State_Name==26 and Crop==109 or State_Name==7 and Crop==109 or State_Name==17 and Crop==109 or State_Name==0 and Crop==109 :1060        prediction=01061        return render_template('index.html',1062                                   prediction_text='The predicted production of the crop is {} tonne as selected crop is not cultivated in this state'.format(prediction),1063                                   state='State_Name :{}'.format(State_Name1),1064                                   district='District_Name :{}'.format(District_Name1),1065                                   year='Crop_Year :{}'.format(Crop_Year1),1066                                   season='Season :{}'.format(Season1),1067                                   crop='Crop :{}'.format(Crop1),1068                                   Area='Area :{} ha'.format(Area_in))1069    1070    #Cabbage & Cauliflower1071    1072    if State_Name==30 and Crop==57 or State_Name==30 and Crop==28 or State_Name==20 and Crop==28 :1073        prediction=01074        return render_template('index.html',1075                                   prediction_text='The predicted production of the crop is {} tonne as selected crop is not cultivated in this state'.format(prediction),1076                                   state='State_Name :{}'.format(State_Name1),1077                                   district='District_Name :{}'.format(District_Name1),1078                                   year='Crop_Year :{}'.format(Crop_Year1),1079                                   season='Season :{}'.format(Season1),1080                                   crop='Crop :{}'.format(Crop1),1081                                   Area='Area :{} ha'.format(Area_in))1082    #Groundnut1083    if State_Name==24 and Crop==98 or State_Name==10 and Crop==98 or State_Name==1 and Crop==98 or State_Name==5 and Crop==98 or State_Name==3 and Crop==98 :1084        prediction=01085        return render_template('index.html',1086                                   prediction_text='The predicted production of the crop is {} tonne as selected crop is not cultivated in this state'.format(prediction),1087                                   state='State_Name :{}'.format(State_Name1),1088                                   district='District_Name :{}'.format(District_Name1),1089                                   year='Crop_Year :{}'.format(Crop_Year1),1090                                   season='Season :{}'.format(Season1),1091                                   crop='Crop :{}'.format(Crop1),1092                                   Area='Area :{} ha'.format(Area_in))1093    #Maize1094    if State_Name==30 and Crop==103 or State_Name==32 and Crop==103 or State_Name==27 and Crop==103 :1095        prediction=01096        return render_template('index.html',1097                                   prediction_text='The predicted production of the crop is {} tonne as selected crop is not cultivated in this state'.format(prediction),1098                                   state='State_Name :{}'.format(State_Name1),1099                                   district='District_Name :{}'.format(District_Name1),1100                                   year='Crop_Year :{}'.format(Crop_Year1),1101                                   season='Season :{}'.format(Season1),1102                                   crop='Crop :{}'.format(Crop1),1103                                   Area='Area :{} ha'.format(Area_in)) 1104    #Mango1105    if State_Name==5 and Crop==106 or State_Name==6 and Crop==106 or State_Name==3 and Crop==106 :1106        prediction=01107        return render_template('index.html',1108                                   prediction_text='The predicted production of the crop is {} tonne as selected crop is not cultivated in this state'.format(prediction),1109                                   state='State_Name :{}'.format(State_Name1),1110                                   district='District_Name :{}'.format(District_Name1),1111                                   year='Crop_Year :{}'.format(Crop_Year1),1112                                   season='Season :{}'.format(Season1),1113                                   crop='Crop :{}'.format(Crop1),1114                                   Area='Area :{} ha'.format(Area_in))1115    1116     #Moong1117    if State_Name==5 and Crop==54 or State_Name==6 and Crop==54 or State_Name==3 and Crop==54 or State_Name==30 and Crop==54 or State_Name==1 and Crop==54 or State_Name==4 and Crop==54:1118        prediction=01119        return render_template('index.html',1120                                   prediction_text='The predicted production of the crop is {} tonne as selected crop is not cultivated in this state'.format(prediction),1121                                   state='State_Name :{}'.format(State_Name1),1122                                   district='District_Name :{}'.format(District_Name1),1123                                   year='Crop_Year :{}'.format(Crop_Year1),1124                                   season='Season :{}'.format(Season1),1125                                   crop='Crop :{}'.format(Crop1),1126                                   Area='Area :{} ha'.format(Area_in))1127    #Onion1128    if State_Name==2 and Crop==94 or State_Name==30 and Crop==94 or State_Name==32 and Crop==94 or State_Name==3 and Crop==94 or State_Name==31 and Crop==94 or State_Name==7 and Crop==94:1129        prediction=01130        return render_template('index.html',1131                                   prediction_text='The predicted production of the crop is {} tonne as selected crop is not cultivated in this state'.format(prediction),1132                                   state='State_Name :{}'.format(State_Name1),1133                                   district='District_Name :{}'.format(District_Name1),1134                                   year='Crop_Year :{}'.format(Crop_Year1),1135                                   season='Season :{}'.format(Season1),1136                                   crop='Crop :{}'.format(Crop1),1137                                   Area='Area :{} ha'.format(Area_in))1138    #Potato & Rapseed(96)1139    if State_Name==30 and Crop==111 or State_Name==32 and Crop==111 or State_Name==31 and Crop==111 or State_Name==30 and Crop==96 or State_Name==32 and Crop==96:1140        prediction=01141        return render_template('index.html',1142                                   prediction_text='The predicted production of the crop is {} tonne as selected crop is not cultivated in this state'.format(prediction),1143                                   state='State_Name :{}'.format(State_Name1),1144                                   district='District_Name :{}'.format(District_Name1),1145                                   year='Crop_Year :{}'.format(Crop_Year1),1146                                   season='Season :{}'.format(Season1),1147                                   crop='Crop :{}'.format(Crop1),1148                                   Area='Area :{} ha'.format(Area_in))1149    #Soyabean1150    if State_Name==30 and Crop==108 or State_Name==24 and Crop==108 or State_Name==15 and Crop==108 or State_Name==21 and Crop==108 or State_Name==10 and Crop==108 or State_Name==32 and Crop==108 or State_Name==26 and Crop==108 or State_Name==9 and Crop==108 or State_Name==28 and Crop==108:1151        prediction=01152        return render_template('index.html',1153                                   prediction_text='The predicted production of the crop is {} tonne as selected crop is not cultivated in this state'.format(prediction),1154                                   state='State_Name :{}'.format(State_Name1),1155                                   district='District_Name :{}'.format(District_Name1),1156                                   year='Crop_Year :{}'.format(Crop_Year1),1157                                   season='Season :{}'.format(Season1),1158                                   crop='Crop :{}'.format(Crop1),1159                                   Area='Area :{} ha'.format(Area_in))1160    #Sugarcane & Urad1161    if State_Name==3 and Crop==121 or State_Name==0 and Crop==121 or State_Name==30 and Crop==67 or State_Name==6 and Crop==67 or State_Name==5 and Crop==67 or State_Name==3 and Crop==67 or State_Name==32 and Crop==67 or State_Name==1 and Crop==67:1162        prediction=01163        return render_template('index.html',1164                                   prediction_text='The predicted production of the crop is {} tonne as selected crop is not cultivated in this state'.format(prediction),1165                                   state='State_Name :{}'.format(State_Name1),1166                                   district='District_Name :{}'.format(District_Name1),1167                                   year='Crop_Year :{}'.format(Crop_Year1),1168                                   season='Season :{}'.format(Season1),1169                                   crop='Crop :{}'.format(Crop1),1170                                   Area='Area :{} ha'.format(Area_in))1171    #Wheat1172    1173    if State_Name==29 and Crop==119 or State_Name==32 and Crop==119 or State_Name==1 and Crop==119 or State_Name==30 and Crop==119 or State_Name==27 and Crop==119 or State_Name==31 and Crop==119:1174        prediction=01175        return render_template('index.html',1176                                   prediction_text='The predicted production of the crop is {} tonne as selected crop is not cultivated in this state'.format(prediction),1177                                   state='State_Name :{}'.format(State_Name1),1178                                   district='District_Name :{}'.format(District_Name1),1179                                   year='Crop_Year :{}'.format(Crop_Year1),1180                                   season='Season :{}'.format(Season1),1181                                   crop='Crop :{}'.format(Crop1),1182                                   Area='Area :{} ha'.format(Area_in))1183    #Rice1184    if State_Name==10 and Crop==117 or State_Name==16 and Crop==117 or State_Name==5 and Crop==117 or State_Name==9 and Crop==117 or State_Name==1 and Crop==117 or State_Name==6 and Crop==117 or State_Name==2 and Crop==117:1185        prediction=01186        return render_template('index.html',1187                                   prediction_text='The predicted production of the crop is {} tonne as selected crop is not cultivated in this state'.format(prediction),1188                                   state='State_Name :{}'.format(State_Name1),1189                                   district='District_Name :{}'.format(District_Name1),1190                                   year='Crop_Year :{}'.format(Crop_Year1),1191                                   season='Season :{}'.format(Season1),1192                                   crop='Crop :{}'.format(Crop1),1193                                   Area='Area :{} ha'.format(Area_in))1194    1195    #Barley1196    1197    if State_Name==0 and Crop==83 or State_Name==1 and Crop==83 or State_Name==2 and Crop==83 or State_Name==4 and Crop==83 or State_Name==5 and Crop==83 or State_Name==6 and Crop==83 or State_Name==7 and Crop==83 or State_Name==9 and Crop==83 or State_Name==10 and Crop==83 or State_Name==13 and Crop==83 or State_Name==18 and Crop==83 or State_Name==19 and Crop==83 or State_Name==20 and Crop==83 or State_Name==22 and Crop==83 or State_Name==24 and Crop==83 or State_Name==27 and Crop==83 or State_Name==28 and Crop==83 or State_Name==29 and Crop==83 or State_Name==30 and Crop==83 or State_Name==31 and Crop==83 or State_Name==32 and Crop==83 :1198        prediction=01199        return render_template('index.html',1200                                   prediction_text='The predicted production of the crop is {} tonne as selected crop is not cultivated in this state'.format(prediction),1201                                   state='State_Name :{}'.format(State_Name1),1202                                   district='District_Name :{}'.format(District_Name1),1203                                   year='Crop_Year :{}'.format(Crop_Year1),1204                                   season='Season :{}'.format(Season1),1205                                   crop='Crop :{}'.format(Crop1),1206                                   Area='Area :{} ha'.format(Area_in))1207    #Cashewnut1208    1209    if State_Name==0 and Crop==66 or State_Name==1 and Crop==66 or State_Name==2 and Crop==66 or State_Name==3 and Crop==66 or State_Name==6 and Crop==66 or State_Name==7 and Crop==66 or State_Name==8 and Crop==66 or State_Name==11 and Crop==66 or State_Name==13 and Crop==66 or State_Name==14 and Crop==66 or State_Name==15 and Crop==66 or State_Name==16 and Crop==66 or State_Name==17 and Crop==66 or State_Name==21 and Crop==66 or State_Name==23 and Crop==66 or State_Name==26 and Crop==66 or State_Name==31 and Crop==66 :1210        prediction=01211        return render_template('index.html',1212                                   prediction_text='The predicted production of the crop is {} tonne as selected crop is not cultivated in this state'.format(prediction),1213                                   state='State_Name :{}'.format(State_Name1),1214                                   district='District_Name :{}'.format(District_Name1),1215                                   year='Crop_Year :{}'.format(Crop_Year1),1216                                   season='Season :{}'.format(Season1),1217                                   crop='Crop :{}'.format(Crop1),1218                                   Area='Area :{} ha'.format(Area_in))1219    #castor1220    1221    if State_Name==0 and Crop==79 or State_Name==1 and Crop==79 or State_Name==2 and Crop==79 or State_Name==3 and Crop==79 or State_Name==5 and Crop==79 or State_Name==6 and Crop==79 or State_Name==7 and Crop==79 or State_Name==8 and Crop==79 or State_Name==9 and Crop==79 or State_Name==10 and Crop==79 or State_Name==11 and Crop==79 or State_Name==12 and Crop==79 or State_Name==17 and Crop==79 or State_Name==23 and Crop==79 or State_Name==25 and Crop==79 or State_Name==26 and Crop==79 or State_Name==27 and Crop==79 or State_Name==30 and Crop==79 or State_Name==31 and Crop==79 or State_Name==32 and Crop==79 :1222        prediction=01223        return render_template('index.html',1224                                   prediction_text='The predicted production of the crop is {} tonne as selected crop is not cultivated in this state'.format(prediction),1225                                   state='State_Name :{}'.format(State_Name1),1226                                   district='District_Name :{}'.format(District_Name1),1227                                   year='Crop_Year :{}'.format(Crop_Year1),1228                                   season='Season :{}'.format(Season1),1229                                   crop='Crop :{}'.format(Crop1),1230                                   Area='Area :{} ha'.format(Area_in))1231     #coconut1232    1233    if State_Name==0 and Crop==122 or State_Name==1 and Crop==122 or State_Name==2 and Crop==122 or State_Name==3 and Crop==122 or State_Name==5 and Crop==122 or State_Name==6 and Crop==122 or State_Name==7 and Crop==122 or State_Name==8 and Crop==122 or State_Name==10 and Crop==122 or State_Name==11 and Crop==122 or State_Name==12 and Crop==122 or State_Name==14 and Crop==122 or State_Name==15 and Crop==122 or State_Name==16 and Crop==122 or State_Name==17 and Crop==122 or State_Name==21 and Crop==122 or State_Name==23 and Crop==122 or State_Name==26 and Crop==122 :1234        prediction=01235        return render_template('index.html',1236                                   prediction_text='The predicted production of the crop is {} tonne as selected crop is not cultivated in this state'.format(prediction),1237                                   state='State_Name :{}'.format(State_Name1),1238                                   district='District_Name :{}'.format(District_Name1),1239                                   year='Crop_Year :{}'.format(Crop_Year1),1240                                   season='Season :{}'.format(Season1),1241                                   crop='Crop :{}'.format(Crop1),1242                                   Area='Area :{} ha'.format(Area_in))1243    #Coffee1244    1245    if State_Name==0 and Crop==105 or State_Name==1 and Crop==105 or State_Name==2 and Crop==105 or State_Name==3 and Crop==105 or State_Name==4 and Crop==105 or State_Name==5 and Crop==105 or State_Name==6 and Crop==105 or State_Name==7 and Crop==105 or State_Name==8 and Crop==105 or State_Name==9 and Crop==105 or State_Name==10 and Crop==105 or State_Name==11 and Crop==105 or State_Name==12 and Crop==105 or State_Name==14 and Crop==105 or State_Name==15 and Crop==105 or State_Name==16 and Crop==105 or State_Name==17 and Crop==105 or State_Name==19 and Crop==105 or State_Name==20 and Crop==105 or State_Name==21 and Crop==105 or State_Name==22 and Crop==105 or State_Name==23 and Crop==105 or State_Name==25 and Crop==105 or State_Name==26 and Crop==105 or State_Name==27 and Crop==105 or State_Name==30 and Crop==105 or State_Name==31 and Crop==105 :1246        1247        prediction=01248        return render_template('index.html',1249                                   prediction_text='The predicted production of the crop is {} tonne as selected crop is not cultivated in this state'.format(prediction),1250                                   state='State_Name :{}'.format(State_Name1),1251                                   district='District_Name :{}'.format(District_Name1),1252                                   year='Crop_Year :{}'.format(Crop_Year1),1253                                   season='Season :{}'.format(Season1),1254                                   crop='Crop :{}'.format(Crop1),1255                                   Area='Area :{} ha'.format(Area_in))1256     #CONDIMENTS 1257    1258    if State_Name==0 and Crop==22 or State_Name==1 and Crop==22 or State_Name==2 and Crop==22 or State_Name==3 and Crop==22 or State_Name==4 and Crop==22 or State_Name==5 and Crop==22 or State_Name==7 and Crop==22 or State_Name==8 and Crop==22 or State_Name==9 and Crop==22 or State_Name==11 and Crop==22 or State_Name==13 and Crop==22 or State_Name==15 and Crop==22 or State_Name==27 and Crop==22 or State_Name==30 and Crop==22 or State_Name==31 and Crop==22 or State_Name==32 and Crop==22 :1259        prediction=01260        return render_template('index.html',1261                                   prediction_text='The predicted production of the crop is {} tonne as selected crop is not cultivated in this state'.format(prediction),1262                                   state='State_Name :{}'.format(State_Name1),1263                                   district='District_Name :{}'.format(District_Name1),1264                                   year='Crop_Year :{}'.format(Crop_Year1),1265                                   season='Season :{}'.format(Season1),1266                                   crop='Crop :{}'.format(Crop1),1267                                   Area='Area :{} ha'.format(Area_in))1268     #Cotton iint 1269    1270    if State_Name==0 and Crop==115 or State_Name==1 and Crop==115 or State_Name==2 and Crop==115 or State_Name==3 and Crop==115 or State_Name==4 and Crop==115 or State_Name==6 and Crop==115 or State_Name==7 and Crop==115 or State_Name==8 and Crop==115 or State_Name==9 and Crop==115 or State_Name==10 and Crop==115 or State_Name==11 and Crop==115 or State_Name==12 and Crop==115 or State_Name==15 and Crop==115 or State_Name==17 and Crop==115 or State_Name==25 and Crop==115 or State_Name==27 and Crop==115 or State_Name==30 and Crop==115 or State_Name==31 and Crop==115 :1271        prediction=01272        return render_template('index.html',1273                                   prediction_text='The predicted production of the crop is {} tonne as selected crop is not cultivated in this state'.format(prediction),1274                                   state='State_Name :{}'.format(State_Name1),1275                                   district='District_Name :{}'.format(District_Name1),1276                                   year='Crop_Year :{}'.format(Crop_Year1),1277                                   season='Season :{}'.format(Season1),1278                                   crop='Crop :{}'.format(Crop1),1279                                   Area='Area :{} ha'.format(Area_in))1280    #jowar1281    1282    if State_Name==0 and Crop==102 or State_Name==1 and Crop==102 or State_Name==2 and Crop==102 or State_Name==3 and Crop==102 or State_Name==4 and Crop==102 or State_Name==5 and Crop==102 or State_Name==6 and Crop==102 or State_Name==7 and Crop==102 or State_Name==8 and Crop==102 or State_Name==9 and Crop==102 or State_Name==11 and Crop==102 or State_Name==13 and Crop==102 or State_Name==17 and Crop==102 or State_Name==24 and Crop==102 or State_Name==25 and Crop==102 or State_Name==26 and Crop==102 or State_Name==27 and Crop==102 or State_Name==30 and Crop==102 or State_Name==31 and Crop==102 or State_Name==32 and Crop==102 :1283        prediction=01284        return render_template('index.html',1285                                   prediction_text='The predicted production of the crop is {} tonne as selected crop is not cultivated in this state'.format(prediction),1286                                   state='State_Name :{}'.format(State_Name1),1287                                   district='District_Name :{}'.format(District_Name1),1288                                   year='Crop_Year :{}'.format(Crop_Year1),1289                                   season='Season :{}'.format(Season1),1290                                   crop='Crop :{}'.format(Crop1),1291                                   Area='Area :{} ha'.format(Area_in))1292     #sunflower1293    1294    if State_Name==0 and Crop==65 or State_Name==1 and Crop==65 or State_Name==3 and Crop==65 or State_Name==5 and Crop==65 or State_Name==6 and Crop==65 or State_Name==7 and Crop==65 or State_Name==8 and Crop==65 or State_Name==9 and Crop==65 or State_Name==11 and Crop==65 or State_Name==14 and Crop==65 or State_Name==16 and Crop==65 or State_Name==17 and Crop==65 or State_Name==19 and Crop==65 or State_Name==24 and Crop==65 or State_Name==27 and Crop==65 or State_Name==30 and Crop==65 or State_Name==31 and Crop==65  or State_Name==32 and Crop==65 :1295        prediction=01296        return render_template('index.html',1297                                   prediction_text='The predicted production of the crop is {} tonne as selected crop is not cultivated in this state'.format(prediction),1298                                   state='State_Name :{}'.format(State_Name1),1299                                   district='District_Name :{}'.format(District_Name1),1300                                   year='Crop_Year :{}'.format(Crop_Year1),1301                                   season='Season :{}'.format(Season1),1302                                   crop='Crop :{}'.format(Crop1),1303                                   Area='Area :{} ha'.format(Area_in))1304     #Tea1305    1306    if State_Name==0 and Crop==70 or State_Name==1 and Crop==70 or State_Name==3 and Crop==70 or State_Name==5 and Crop==70 or State_Name==6 and Crop==70 or State_Name==7 and Crop==70 or State_Name==8 and Crop==70 or State_Name==11 and Crop==70 or State_Name==12 and Crop==70 or State_Name==13 and Crop==70 or State_Name==14 and Crop==70 or State_Name==16 and Crop==70 or State_Name==17 and Crop==70 or State_Name==19 and Crop==70 or State_Name==20 and Crop==70 or State_Name==21 and Crop==70 or State_Name==22 and Crop==70 or State_Name==23 and Crop==70 or State_Name==26 and Crop==70 or State_Name==27 and Crop==70 or State_Name==29 and Crop==70 or State_Name==30 and Crop==70 or State_Name==31 and Crop==70 :1307        prediction=01308        return render_template('index.html',1309                                   prediction_text='The predicted production of the crop is {} tonne as selected crop is not cultivated in this state'.format(prediction),1310                                   state='State_Name :{}'.format(State_Name1),1311                                   district='District_Name :{}'.format(District_Name1),1312                                   year='Crop_Year :{}'.format(Crop_Year1),1313                                   season='Season :{}'.format(Season1),1314                                   crop='Crop :{}'.format(Crop1),1315                                   Area='Area :{} ha'.format(Area_in))1316    1317    1318    #Tobacco1319    1320    if State_Name==0 and Crop==78 or State_Name==2 and Crop==78 or State_Name==3 and Crop==78 or State_Name==4 and Crop==78 or State_Name==6 and Crop==78 or State_Name==7 and Crop==78 or State_Name==8 and Crop==78 or State_Name==9 and Crop==78 or State_Name==11 and Crop==78 or State_Name==17 and Crop==78 or State_Name==21 and Crop==78 or State_Name==26 and Crop==78 or State_Name==27 and Crop==78 or State_Name==29 and Crop==78 or State_Name==30 and Crop==78 or State_Name==31 and Crop==78 :1321        prediction=01322        return render_template('index.html',1323                                   prediction_text='The predicted production of the crop is {} tonne as selected crop is not cultivated in this state'.format(prediction),1324                                   state='State_Name :{}'.format(State_Name1),1325                                   district='District_Name :{}'.format(District_Name1),1326                                   year='Crop_Year :{}'.format(Crop_Year1),1327                                   season='Season :{}'.format(Season1),1328                                   crop='Crop :{}'.format(Crop1),1329                                   Area='Area :{} ha'.format(Area_in))1330        1331            1332       1333            1334        1335            1336    else:1337        return render_template('index.html',prediction_text='The predicted production of the selected crop is {} tonne'.format(prediction),1338                              state='State_Name :{}'.format(State_Name1),1339                              district='District_Name :{}'.format(District_Name1),1340                              year='Crop_Year :{}'.format(Crop_Year1),1341                              season='Season :{}'.format(Season1),1342                              crop='Crop :{}'.format(Crop1),1343                              crop_div='Description of Crop :{}'.format(Crop1),1344                              crop_out=crop2,1345                              Area='Area :{} ha'.format(Area_in),1346                              #prediction_text1='crop production prediction1 {} tonne'.format(prediction1),1347                              #prediction_text2='crop production prediction2 {} tonne'.format(prediction2),1348                              #prediction_text3='crop production prediction3 {} tonne'.format(prediction3),1349                              #prediction_text4='crop production prediction4 {} tonne'.format(prediction4),1350                              prediction_text1=prediction1,1351                              prediction_text2=prediction2,1352                              prediction_text3=prediction,1353                              prediction_text4=prediction3,1354                              prediction_text5=prediction4,1355                              prediction_Area=prediction,1356                              prediction_Area1=prediction_Area1,1357                              prediction_Area2=prediction_Area2,1358                              prediction_Area3=prediction_Area3,1359                              prediction_Area4=prediction_Area4,1360                              1361                              Area_enter=Area,1362                              Area1=Area1,1363                              Area2=Area2,1364                              Area3=Area3,1365                              Area4=Area4,1366                              crop1=Crop_Year7,1367                              crop2=Crop_Year8,1368                              crop3=Crop_Year1,1369                              crop4=Crop_Year9,1370                              crop5=Crop_Year10)1371                              #crop2='Crop_Year :{}'.format(Crop_Year8),1372                              #crop3='Crop_Year :{}'.format(Crop_Year9),1373                              #crop4='Crop_Year :{}'.format(Crop_Year10))1374# In[12]:1375if __name__=="__main__":1376    app.run(debug=True)...transformer_test_data.py
Source:transformer_test_data.py  
...31    def reorientate(self):32        self.calls["reorientate"] += 133    def resize(self, width, height):34        self.calls["resize"].append({"width": width, "height": height})35    def crop(self, left, top, right, bottom):36        self.calls["crop"].append(37            {"left": left, "top": top, "right": right, "bottom": bottom}38        )39    def flip_horizontally(self):40        self.calls["horizontal_flip"] += 141    def flip_vertically(self):42        self.calls["vertical_flip"] += 143    def get_proportional_width(self, new_height):44        width, height = self.size45        return float(new_height) * width / height46    def get_proportional_height(self, new_width):47        width, height = self.size48        return float(new_width) * height / width49    def focus(self, focal_points):...image_operations.py
Source:image_operations.py  
...94            rect = rect.move_to_cover(focal_point)95        # Don't allow the crop box to go over the image boundary96        rect = rect.move_to_clamp(Rect(0, 0, image_width, image_height))97        # Crop!98        willow.crop(rect.round())99        # Get scale for resizing100        # The scale should be the same for both the horizontal and101        # vertical axes102        aftercrop_width, aftercrop_height = willow.get_size()103        scale = self.width / aftercrop_width104        # Only resize if the image is too big105        if scale < 1.0:106            # Resize!107            willow.resize((self.width, self.height))108class MinMaxOperation(Operation):109    def construct(self, size):110        # Get width and height111        width_str, height_str = size.split('x')112        self.width = int(width_str)...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
