Best Python code snippet using pytest-benchmark
feature extraction.py
Source:feature extraction.py  
1import pandas as pd2#neutral = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\eryao\neutral_eryao.csv") #Label = 03#wipers = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\eryao\wipers_eryao.csv") #Label = 14#number7 = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\eryao\num7_eryao.csv") #label = 25#chicken = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\eryao\chicken_eryao.csv") #label = 36#sidestep = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\eryao\sidestep_eryao.csv") #Label = 47#turnclap = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\eryao\turnclap_eryao.csv") #Label = 58#number6 = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\eryao\num6_eryao.csv") #label = 69#salute = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\eryao\salute_eryao.csv") #label = 710#mermaid = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\eryao\mermaid_eryao.csv") #label = 811#swing = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\eryao\swing_eryao.csv") #label = 912#cowboy = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\eryao\cowboy_eryao.csv") #label = 1013#bow = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\eryao\bow_eryao.csv") #label = 1114#neutral = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\yp\neutral_yp.csv") #Label = 015#wipers = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\yp\wipers_yp.csv") #Label = 116#number7 = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\yp\num7_yp.csv") #label = 217#chicken = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\yp\chicken_yp.csv") #label = 318#sidestep = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\yp\sidestep_yp.csv") #Label = 419#turnclap = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\yp\turnclap_yp.csv") #Label = 520#number6 = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\yp\num6_yp.csv") #label = 621#salute = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\yp\salute_yp.csv") #label = 722#mermaid = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\yp\mermaid_yp.csv") #label = 823#swing = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\yp\swing_yp.csv") #label = 924#cowboy = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\yp\cowboy_yp.csv") #label = 1025#bow = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\yp\bow_yp.csv") #label = 1126#neutral = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\fuad\neutral_fuad.csv") #Label = 027#wipers = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\fuad\wipers_fuad.csv") #Label = 128#number7 = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\fuad\num7_fuad.csv") #label = 229#chicken = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\fuad\chicken_fuad.csv") #label = 330#sidestep = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\fuad\sidestep_fuad.csv") #Label = 431#turnclap = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\fuad\turnclap_fuad.csv") #Label = 532#number6 = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\fuad\num6_fuad.csv") #label = 633#salute = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\fuad\salute_fuad.csv") #label = 734#mermaid = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\fuad\mermaid_fuad.csv") #label = 835#swing = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\fuad\swing_fuad.csv") #label = 936#cowboy = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\fuad\cowboy_fuad.csv") #label = 1037#bow = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\fuad\bow_fuad.csv") #label = 1138neutral = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\melvin\neutral_melvin.csv") #Label = 039wipers = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\melvin\wipers_melvin.csv") #Label = 140number7 = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\melvin\num7_melvin.csv") #label = 241chicken = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\melvin\chicken_melvin.csv") #label = 342sidestep = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\melvin\sidestep_melvin.csv") #Label = 443turnclap = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\melvin\turnclap_melvin.csv") #Label = 544number6 = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\melvin\num6_melvin.csv") #label = 645salute = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\melvin\salute_melvin.csv") #label = 746mermaid = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\melvin\mermaid_melvin.csv") #label = 847swing = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\melvin\swing_melvin.csv") #label = 948cowboy = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\melvin\cowboy_melvin.csv") #label = 1049cowboy2 = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\melvin\cowboy_melvin_2.csv") #label = 1050sidestep2 = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\melvin\sidestep_melvin_2.csv") #Label = 451turnclap2 = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\melvin\turnclap_melvin_2.csv") #Label = 552bow = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\melvin\bow_melvin.csv") #label = 1153#neutral = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\ben\neutral_ben.csv") #Label = 054#wipers = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\ben\wipers_ben.csv") #Label = 155#number7 = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\ben\num7_ben.csv") #label = 256#chicken = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\ben\chicken_ben.csv") #label = 357#sidestep = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\ben\sidestep_ben.csv") #Label = 458#turnclap = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\ben\turnclap_ben.csv") #Label = 559#number6 = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\ben\num6_ben.csv") #label = 660#salute = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\ben\salute_ben.csv") #label = 761#mermaid = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\ben\mermaid_ben.csv") #label = 862#swing = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\ben\swing_ben.csv") #label = 963#cowboy = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\ben\cowboy_ben.csv") #label = 1064#bow = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\ben\bow_ben.csv") #label = 1165#neutral = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\xh\neutral_xh.csv") #Label = 066#wipers = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\xh\wipers_xh.csv") #Label = 167#number7 = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\xh\num7_xh.csv") #label = 268#chicken = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\xh\chicken_xh.csv") #label = 369#sidestep = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\xh\sidestep_xh.csv") #Label = 470#turnclap = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\xh\turnclap_xh.csv") #Label = 571#number6 = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\xh\num6_xh.csv") #label = 672#salute = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\xh\salute_xh.csv") #label = 773#mermaid = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\xh\mermaid_xh.csv") #label = 874#swing = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\xh\swing_xh.csv") #label = 975#cowboy = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\xh\cowboy_xh.csv") #label = 1076#bow = pd.read_csv(r"C:\Users\user\Desktop\CG3002 dataset\xh\bow_xh.csv") #label = 1177labels = []78feature = []79numOfData = 11080overlapNum = 1181numRowsOfchicken = chicken.shape[0]82numRowsOfwipers = wipers.shape[0]83numRowsOfnumber7 = number7.shape[0]84numRowsOfturnclap = turnclap.shape[0]85numRowsOfsidestep = sidestep.shape[0]86numRowsOfnumber6 = number6.shape[0]87numRowsOfsalute = salute.shape[0]88numRowsOfmermaid = mermaid.shape[0]89numRowsOfswing = swing.shape[0]90numRowsOfcowboy = cowboy.shape[0]91numRowsOfbow = bow.shape[0]92numRowsOfneutral = neutral.shape[0]93numRowsOfturnclap2 = turnclap2.shape[0]94numRowsOfsidestep2 = sidestep2.shape[0]95numRowsOfcowboy2 = cowboy2.shape[0]96mean_data = pd.DataFrame()97max_data = pd.DataFrame()98iqr_data = pd.DataFrame()99i=0100for line in chicken.iterrows():101    a = chicken[i:i+numOfData:].copy()102    a.loc['mean'] = a.mean()103    a.loc['max'] = a.max()104    Q3 = a.quantile(0.75)105    Q1 = a.quantile(0.25)106    a.loc['iqr'] = Q3 - Q1107    mean_data = mean_data.append(a.loc['mean'], ignore_index = True)108    max_data = max_data.append(a.loc['max'], ignore_index = True)109    iqr_data = iqr_data.append(a.loc['iqr'], ignore_index = True)110    111    if( (i + overlapNum) > (numRowsOfchicken - numOfData)):112        break113    else:114        i = i + overlapNum115mean_data = mean_data.rename(index=str, columns={'GyX 1': 'mean_GyX 1', 'GyY 1': 'mean_GyY 1', 'GyZ 1': 'mean_GyZ 1',116                                                 'AcX 1': 'mean_AcX 1', 'AcY 1': 'mean_AcY 1', 'AcZ 1': 'mean_AcZ 1',117                                                 'GyX 2': 'mean_GyX 2', 'GyY 2': 'mean_GyY 2', 'GyZ 2': 'mean_GyZ 2',118                                                 'AcX 2': 'mean_AcX 2', 'AcY 2': 'mean_AcY 2', 'AcZ 2': 'mean_AcZ 2', })119max_data = max_data.rename(index=str, columns=  {'AcX 1': 'max_AcX 1', 'AcY 1': 'max_AcY 1', 'AcZ 1': 'max_AcZ 1', 120                                                 'GyX 1': 'max_GyX 1', 'GyY 1': 'max_GyY 1', 'GyZ 1': 'max_GyZ 1',121                                                 'AcX 2': 'max_AcX 2', 'AcY 2': 'max_AcY 2', 'AcZ 2': 'max_AcZ 2', 122                                                 'GyX 2': 'max_GyX 2', 'GyY 2': 'max_GyY 2', 'GyZ 2': 'max_GyZ 2',})123iqr_data = iqr_data.rename(index=str, columns=  {'AcX 1': 'iqr_AcX 1', 'AcY 1': 'iqr_AcY 1', 'AcZ 1': 'iqr_AcZ 1', 124                                                 'GyX 1': 'iqr_GyX 1', 'GyY 1': 'iqr_GyY 1', 'GyZ 1': 'iqr_GyZ 1',125                                                 'AcX 2': 'iqr_AcX 2', 'AcY 2': 'iqr_AcY 2', 'AcZ 2': 'iqr_AcZ 2', 126                                                 'GyX 2': 'iqr_GyX 2', 'GyY 2': 'iqr_GyY 2', 'GyZ 2': 'iqr_GyZ 2',})127activity = mean_data['activity'].copy()128mean_data = mean_data.drop(['activity'], axis = 1)129max_data = max_data.drop(['activity'], axis = 1)130iqr_data = iqr_data.drop(['activity'], axis = 1)131chicken_extracted_data = mean_data.join(max_data)132chicken_extracted_data = chicken_extracted_data.join(iqr_data)133chicken_extracted_data['activity'] = activity134#chicken_extracted_data.to_csv(r'C:\Users\User\Desktop\CG3002 extracted features\chicken_extracted_dataset.csv',index=False)135i=0136mean_data = pd.DataFrame()137max_data = pd.DataFrame()138iqr_data = pd.DataFrame()139for line in neutral.iterrows():140    a = neutral[i:i+numOfData:].copy()141    a.loc['mean'] = a.mean()142    a.loc['max'] = a.max()143    Q3 = a.quantile(0.75)144    Q1 = a.quantile(0.25)145    a.loc['iqr'] = Q3 - Q1146    mean_data = mean_data.append(a.loc['mean'], ignore_index = True)147    max_data = max_data.append(a.loc['max'], ignore_index = True)148    iqr_data = iqr_data.append(a.loc['iqr'], ignore_index = True)149    150    if( (i + overlapNum) > (numRowsOfneutral - numOfData)):151        break152    else:153        i = i + overlapNum154mean_data = mean_data.rename(index=str, columns={'GyX 1': 'mean_GyX 1', 'GyY 1': 'mean_GyY 1', 'GyZ 1': 'mean_GyZ 1',155                                                 'AcX 1': 'mean_AcX 1', 'AcY 1': 'mean_AcY 1', 'AcZ 1': 'mean_AcZ 1',156                                                 'GyX 2': 'mean_GyX 2', 'GyY 2': 'mean_GyY 2', 'GyZ 2': 'mean_GyZ 2',157                                                 'AcX 2': 'mean_AcX 2', 'AcY 2': 'mean_AcY 2', 'AcZ 2': 'mean_AcZ 2', })158max_data = max_data.rename(index=str, columns=  {'AcX 1': 'max_AcX 1', 'AcY 1': 'max_AcY 1', 'AcZ 1': 'max_AcZ 1', 159                                                 'GyX 1': 'max_GyX 1', 'GyY 1': 'max_GyY 1', 'GyZ 1': 'max_GyZ 1',160                                                 'AcX 2': 'max_AcX 2', 'AcY 2': 'max_AcY 2', 'AcZ 2': 'max_AcZ 2', 161                                                 'GyX 2': 'max_GyX 2', 'GyY 2': 'max_GyY 2', 'GyZ 2': 'max_GyZ 2',})162iqr_data = iqr_data.rename(index=str, columns=  {'AcX 1': 'iqr_AcX 1', 'AcY 1': 'iqr_AcY 1', 'AcZ 1': 'iqr_AcZ 1', 163                                                 'GyX 1': 'iqr_GyX 1', 'GyY 1': 'iqr_GyY 1', 'GyZ 1': 'iqr_GyZ 1',164                                                 'AcX 2': 'iqr_AcX 2', 'AcY 2': 'iqr_AcY 2', 'AcZ 2': 'iqr_AcZ 2', 165                                                 'GyX 2': 'iqr_GyX 2', 'GyY 2': 'iqr_GyY 2', 'GyZ 2': 'iqr_GyZ 2',})166activity = mean_data['activity'].copy()167mean_data = mean_data.drop(['activity'], axis = 1)168max_data = max_data.drop(['activity'], axis = 1)169iqr_data = iqr_data.drop(['activity'], axis = 1)170neutral_extracted_data = mean_data.join(max_data)171neutral_extracted_data = neutral_extracted_data.join(iqr_data)172neutral_extracted_data['activity'] = activity173#neutral_extracted_data.to_csv(r'C:\Users\User\Desktop\CG3002 extracted features\neutral_extracted_dataset.csv',index=False)174i=0175mean_data = pd.DataFrame()176max_data = pd.DataFrame()177iqr_data = pd.DataFrame()178for line in wipers.iterrows():179    a = wipers[i:i+numOfData:].copy()180    a.loc['mean'] = a.mean()181    a.loc['max'] = a.max()182    Q3 = a.quantile(0.75)183    Q1 = a.quantile(0.25)184    a.loc['iqr'] = Q3 - Q1185    mean_data = mean_data.append(a.loc['mean'], ignore_index = True)186    max_data = max_data.append(a.loc['max'], ignore_index = True)187    iqr_data = iqr_data.append(a.loc['iqr'], ignore_index = True)188    189    if( (i + overlapNum) > (numRowsOfwipers - numOfData)):190        break191    else:192        i = i + overlapNum193mean_data = mean_data.rename(index=str, columns={'GyX 1': 'mean_GyX 1', 'GyY 1': 'mean_GyY 1', 'GyZ 1': 'mean_GyZ 1',194                                                 'AcX 1': 'mean_AcX 1', 'AcY 1': 'mean_AcY 1', 'AcZ 1': 'mean_AcZ 1',195                                                 'GyX 2': 'mean_GyX 2', 'GyY 2': 'mean_GyY 2', 'GyZ 2': 'mean_GyZ 2',196                                                 'AcX 2': 'mean_AcX 2', 'AcY 2': 'mean_AcY 2', 'AcZ 2': 'mean_AcZ 2', })197max_data = max_data.rename(index=str, columns=  {'AcX 1': 'max_AcX 1', 'AcY 1': 'max_AcY 1', 'AcZ 1': 'max_AcZ 1', 198                                                 'GyX 1': 'max_GyX 1', 'GyY 1': 'max_GyY 1', 'GyZ 1': 'max_GyZ 1',199                                                 'AcX 2': 'max_AcX 2', 'AcY 2': 'max_AcY 2', 'AcZ 2': 'max_AcZ 2', 200                                                 'GyX 2': 'max_GyX 2', 'GyY 2': 'max_GyY 2', 'GyZ 2': 'max_GyZ 2',})201iqr_data = iqr_data.rename(index=str, columns=  {'AcX 1': 'iqr_AcX 1', 'AcY 1': 'iqr_AcY 1', 'AcZ 1': 'iqr_AcZ 1', 202                                                 'GyX 1': 'iqr_GyX 1', 'GyY 1': 'iqr_GyY 1', 'GyZ 1': 'iqr_GyZ 1',203                                                 'AcX 2': 'iqr_AcX 2', 'AcY 2': 'iqr_AcY 2', 'AcZ 2': 'iqr_AcZ 2', 204                                                 'GyX 2': 'iqr_GyX 2', 'GyY 2': 'iqr_GyY 2', 'GyZ 2': 'iqr_GyZ 2',})205activity = mean_data['activity'].copy()206mean_data = mean_data.drop(['activity'], axis = 1)207max_data = max_data.drop(['activity'], axis = 1)208iqr_data = iqr_data.drop(['activity'], axis = 1)209wipers_extracted_data = mean_data.join(max_data)210wipers_extracted_data = wipers_extracted_data.join(iqr_data)211wipers_extracted_data['activity'] = activity212#wipers_extracted_data.to_csv(r'C:\Users\User\Desktop\CG3002 extracted features\wipers_extracted_dataset.csv',index=False)213i=0214mean_data = pd.DataFrame()215max_data = pd.DataFrame()216iqr_data = pd.DataFrame()217for line in number7.iterrows():218    a = number7[i:i+numOfData:].copy()219    a.loc['mean'] = a.mean()220    a.loc['max'] = a.max()221    Q3 = a.quantile(0.75)222    Q1 = a.quantile(0.25)223    a.loc['iqr'] = Q3 - Q1224    mean_data = mean_data.append(a.loc['mean'], ignore_index = True)225    max_data = max_data.append(a.loc['max'], ignore_index = True)226    iqr_data = iqr_data.append(a.loc['iqr'], ignore_index = True)227    228    if( (i + overlapNum) > (numRowsOfnumber7 - numOfData)):229        break230    else:231        i = i + overlapNum232mean_data = mean_data.rename(index=str, columns={'GyX 1': 'mean_GyX 1', 'GyY 1': 'mean_GyY 1', 'GyZ 1': 'mean_GyZ 1',233                                                 'AcX 1': 'mean_AcX 1', 'AcY 1': 'mean_AcY 1', 'AcZ 1': 'mean_AcZ 1',234                                                 'GyX 2': 'mean_GyX 2', 'GyY 2': 'mean_GyY 2', 'GyZ 2': 'mean_GyZ 2',235                                                 'AcX 2': 'mean_AcX 2', 'AcY 2': 'mean_AcY 2', 'AcZ 2': 'mean_AcZ 2', })236max_data = max_data.rename(index=str, columns=  {'AcX 1': 'max_AcX 1', 'AcY 1': 'max_AcY 1', 'AcZ 1': 'max_AcZ 1', 237                                                 'GyX 1': 'max_GyX 1', 'GyY 1': 'max_GyY 1', 'GyZ 1': 'max_GyZ 1',238                                                 'AcX 2': 'max_AcX 2', 'AcY 2': 'max_AcY 2', 'AcZ 2': 'max_AcZ 2', 239                                                 'GyX 2': 'max_GyX 2', 'GyY 2': 'max_GyY 2', 'GyZ 2': 'max_GyZ 2',})240iqr_data = iqr_data.rename(index=str, columns=  {'AcX 1': 'iqr_AcX 1', 'AcY 1': 'iqr_AcY 1', 'AcZ 1': 'iqr_AcZ 1', 241                                                 'GyX 1': 'iqr_GyX 1', 'GyY 1': 'iqr_GyY 1', 'GyZ 1': 'iqr_GyZ 1',242                                                 'AcX 2': 'iqr_AcX 2', 'AcY 2': 'iqr_AcY 2', 'AcZ 2': 'iqr_AcZ 2', 243                                                 'GyX 2': 'iqr_GyX 2', 'GyY 2': 'iqr_GyY 2', 'GyZ 2': 'iqr_GyZ 2',})244activity = mean_data['activity'].copy()245mean_data = mean_data.drop(['activity'], axis = 1)246max_data = max_data.drop(['activity'], axis = 1)247iqr_data = iqr_data.drop(['activity'], axis = 1)248number7_extracted_data = mean_data.join(max_data)249number7_extracted_data = number7_extracted_data.join(iqr_data)250number7_extracted_data['activity'] = activity251#number7_extracted_data.to_csv(r'C:\Users\User\Desktop\CG3002 extracted features\number7_extracted_dataset.csv',index=False)252i=0253mean_data = pd.DataFrame()254max_data = pd.DataFrame()255iqr_data = pd.DataFrame()256for line in sidestep.iterrows():257    a = sidestep[i:i+numOfData:].copy()258    a.loc['mean'] = a.mean()259    a.loc['max'] = a.max()260    Q3 = a.quantile(0.75)261    Q1 = a.quantile(0.25)262    a.loc['iqr'] = Q3 - Q1263    mean_data = mean_data.append(a.loc['mean'], ignore_index = True)264    max_data = max_data.append(a.loc['max'], ignore_index = True)265    iqr_data = iqr_data.append(a.loc['iqr'], ignore_index = True)266    267    if( (i + overlapNum) > (numRowsOfsidestep - numOfData)):268        break269    else:270        i = i + overlapNum271mean_data = mean_data.rename(index=str, columns={'GyX 1': 'mean_GyX 1', 'GyY 1': 'mean_GyY 1', 'GyZ 1': 'mean_GyZ 1',272                                                 'AcX 1': 'mean_AcX 1', 'AcY 1': 'mean_AcY 1', 'AcZ 1': 'mean_AcZ 1',273                                                 'GyX 2': 'mean_GyX 2', 'GyY 2': 'mean_GyY 2', 'GyZ 2': 'mean_GyZ 2',274                                                 'AcX 2': 'mean_AcX 2', 'AcY 2': 'mean_AcY 2', 'AcZ 2': 'mean_AcZ 2', })275max_data = max_data.rename(index=str, columns=  {'AcX 1': 'max_AcX 1', 'AcY 1': 'max_AcY 1', 'AcZ 1': 'max_AcZ 1', 276                                                 'GyX 1': 'max_GyX 1', 'GyY 1': 'max_GyY 1', 'GyZ 1': 'max_GyZ 1',277                                                 'AcX 2': 'max_AcX 2', 'AcY 2': 'max_AcY 2', 'AcZ 2': 'max_AcZ 2', 278                                                 'GyX 2': 'max_GyX 2', 'GyY 2': 'max_GyY 2', 'GyZ 2': 'max_GyZ 2',})279iqr_data = iqr_data.rename(index=str, columns=  {'AcX 1': 'iqr_AcX 1', 'AcY 1': 'iqr_AcY 1', 'AcZ 1': 'iqr_AcZ 1', 280                                                 'GyX 1': 'iqr_GyX 1', 'GyY 1': 'iqr_GyY 1', 'GyZ 1': 'iqr_GyZ 1',281                                                 'AcX 2': 'iqr_AcX 2', 'AcY 2': 'iqr_AcY 2', 'AcZ 2': 'iqr_AcZ 2', 282                                                 'GyX 2': 'iqr_GyX 2', 'GyY 2': 'iqr_GyY 2', 'GyZ 2': 'iqr_GyZ 2',})283activity = mean_data['activity'].copy()284mean_data = mean_data.drop(['activity'], axis = 1)285max_data = max_data.drop(['activity'], axis = 1)286iqr_data = iqr_data.drop(['activity'], axis = 1)287sidestep_extracted_data = mean_data.join(max_data)288sidestep_extracted_data = sidestep_extracted_data.join(iqr_data)289sidestep_extracted_data['activity'] = activity290#sidestep_extracted_data.to_csv(r'C:\Users\User\Desktop\CG3002 extracted features\sidestep_extracted_dataset.csv',index=False)291i=0292mean_data = pd.DataFrame()293max_data = pd.DataFrame()294iqr_data = pd.DataFrame()295for line in turnclap.iterrows():296    a = turnclap[i:i+numOfData:].copy()297    a.loc['mean'] = a.mean()298    a.loc['max'] = a.max()299    Q3 = a.quantile(0.75)300    Q1 = a.quantile(0.25)301    a.loc['iqr'] = Q3 - Q1302    mean_data = mean_data.append(a.loc['mean'], ignore_index = True)303    max_data = max_data.append(a.loc['max'], ignore_index = True)304    iqr_data = iqr_data.append(a.loc['iqr'], ignore_index = True)305    306    if( (i + overlapNum) > (numRowsOfturnclap - numOfData)):307        break308    else:309        i = i + overlapNum310mean_data = mean_data.rename(index=str, columns={'GyX 1': 'mean_GyX 1', 'GyY 1': 'mean_GyY 1', 'GyZ 1': 'mean_GyZ 1',311                                                 'AcX 1': 'mean_AcX 1', 'AcY 1': 'mean_AcY 1', 'AcZ 1': 'mean_AcZ 1',312                                                 'GyX 2': 'mean_GyX 2', 'GyY 2': 'mean_GyY 2', 'GyZ 2': 'mean_GyZ 2',313                                                 'AcX 2': 'mean_AcX 2', 'AcY 2': 'mean_AcY 2', 'AcZ 2': 'mean_AcZ 2', })314max_data = max_data.rename(index=str, columns=  {'AcX 1': 'max_AcX 1', 'AcY 1': 'max_AcY 1', 'AcZ 1': 'max_AcZ 1', 315                                                 'GyX 1': 'max_GyX 1', 'GyY 1': 'max_GyY 1', 'GyZ 1': 'max_GyZ 1',316                                                 'AcX 2': 'max_AcX 2', 'AcY 2': 'max_AcY 2', 'AcZ 2': 'max_AcZ 2', 317                                                 'GyX 2': 'max_GyX 2', 'GyY 2': 'max_GyY 2', 'GyZ 2': 'max_GyZ 2',})318iqr_data = iqr_data.rename(index=str, columns=  {'AcX 1': 'iqr_AcX 1', 'AcY 1': 'iqr_AcY 1', 'AcZ 1': 'iqr_AcZ 1', 319                                                 'GyX 1': 'iqr_GyX 1', 'GyY 1': 'iqr_GyY 1', 'GyZ 1': 'iqr_GyZ 1',320                                                 'AcX 2': 'iqr_AcX 2', 'AcY 2': 'iqr_AcY 2', 'AcZ 2': 'iqr_AcZ 2', 321                                                 'GyX 2': 'iqr_GyX 2', 'GyY 2': 'iqr_GyY 2', 'GyZ 2': 'iqr_GyZ 2',})322activity = mean_data['activity'].copy()323mean_data = mean_data.drop(['activity'], axis = 1)324max_data = max_data.drop(['activity'], axis = 1)325iqr_data = iqr_data.drop(['activity'], axis = 1)326turnclap_extracted_data = mean_data.join(max_data)327turnclap_extracted_data = turnclap_extracted_data.join(iqr_data)328turnclap_extracted_data['activity'] = activity329#turnclap_extracted_data.to_csv(r'C:\Users\User\Desktop\CG3002 extracted features\turnclap_extracted_dataset.csv',index=False)330i=0331mean_data = pd.DataFrame()332max_data = pd.DataFrame()333iqr_data = pd.DataFrame()334for line in number6.iterrows():335    a = number6[i:i+numOfData:].copy()336    a.loc['mean'] = a.mean()337    a.loc['max'] = a.max()338    Q3 = a.quantile(0.75)339    Q1 = a.quantile(0.25)340    a.loc['iqr'] = Q3 - Q1341    mean_data = mean_data.append(a.loc['mean'], ignore_index = True)342    max_data = max_data.append(a.loc['max'], ignore_index = True)343    iqr_data = iqr_data.append(a.loc['iqr'], ignore_index = True)344    345    if( (i + overlapNum) > (numRowsOfnumber6 - numOfData)):346        break347    else:348        i = i + overlapNum349mean_data = mean_data.rename(index=str, columns={'GyX 1': 'mean_GyX 1', 'GyY 1': 'mean_GyY 1', 'GyZ 1': 'mean_GyZ 1',350                                                 'AcX 1': 'mean_AcX 1', 'AcY 1': 'mean_AcY 1', 'AcZ 1': 'mean_AcZ 1',351                                                 'GyX 2': 'mean_GyX 2', 'GyY 2': 'mean_GyY 2', 'GyZ 2': 'mean_GyZ 2',352                                                 'AcX 2': 'mean_AcX 2', 'AcY 2': 'mean_AcY 2', 'AcZ 2': 'mean_AcZ 2', })353max_data = max_data.rename(index=str, columns=  {'AcX 1': 'max_AcX 1', 'AcY 1': 'max_AcY 1', 'AcZ 1': 'max_AcZ 1', 354                                                 'GyX 1': 'max_GyX 1', 'GyY 1': 'max_GyY 1', 'GyZ 1': 'max_GyZ 1',355                                                 'AcX 2': 'max_AcX 2', 'AcY 2': 'max_AcY 2', 'AcZ 2': 'max_AcZ 2', 356                                                 'GyX 2': 'max_GyX 2', 'GyY 2': 'max_GyY 2', 'GyZ 2': 'max_GyZ 2',})357iqr_data = iqr_data.rename(index=str, columns=  {'AcX 1': 'iqr_AcX 1', 'AcY 1': 'iqr_AcY 1', 'AcZ 1': 'iqr_AcZ 1', 358                                                 'GyX 1': 'iqr_GyX 1', 'GyY 1': 'iqr_GyY 1', 'GyZ 1': 'iqr_GyZ 1',359                                                 'AcX 2': 'iqr_AcX 2', 'AcY 2': 'iqr_AcY 2', 'AcZ 2': 'iqr_AcZ 2', 360                                                 'GyX 2': 'iqr_GyX 2', 'GyY 2': 'iqr_GyY 2', 'GyZ 2': 'iqr_GyZ 2',})361activity = mean_data['activity'].copy()362mean_data = mean_data.drop(['activity'], axis = 1)363max_data = max_data.drop(['activity'], axis = 1)364iqr_data = iqr_data.drop(['activity'], axis = 1)365number6_extracted_data = mean_data.join(max_data)366number6_extracted_data = number6_extracted_data.join(iqr_data)367number6_extracted_data['activity'] = activity368#number6_extracted_data.to_csv(r'C:\Users\User\Desktop\CG3002 extracted features\number6_extracted_dataset.csv',index=False)369i=0370mean_data = pd.DataFrame()371max_data = pd.DataFrame()372iqr_data = pd.DataFrame()373for line in salute.iterrows():374    a = salute[i:i+numOfData:].copy()375    a.loc['mean'] = a.mean()376    a.loc['max'] = a.max()377    Q3 = a.quantile(0.75)378    Q1 = a.quantile(0.25)379    a.loc['iqr'] = Q3 - Q1380    mean_data = mean_data.append(a.loc['mean'], ignore_index = True)381    max_data = max_data.append(a.loc['max'], ignore_index = True)382    iqr_data = iqr_data.append(a.loc['iqr'], ignore_index = True)383    384    if( (i + overlapNum) > (numRowsOfsalute - numOfData)):385        break386    else:387        i = i + overlapNum388mean_data = mean_data.rename(index=str, columns={'GyX 1': 'mean_GyX 1', 'GyY 1': 'mean_GyY 1', 'GyZ 1': 'mean_GyZ 1',389                                                 'AcX 1': 'mean_AcX 1', 'AcY 1': 'mean_AcY 1', 'AcZ 1': 'mean_AcZ 1',390                                                 'GyX 2': 'mean_GyX 2', 'GyY 2': 'mean_GyY 2', 'GyZ 2': 'mean_GyZ 2',391                                                 'AcX 2': 'mean_AcX 2', 'AcY 2': 'mean_AcY 2', 'AcZ 2': 'mean_AcZ 2', })392max_data = max_data.rename(index=str, columns=  {'AcX 1': 'max_AcX 1', 'AcY 1': 'max_AcY 1', 'AcZ 1': 'max_AcZ 1', 393                                                 'GyX 1': 'max_GyX 1', 'GyY 1': 'max_GyY 1', 'GyZ 1': 'max_GyZ 1',394                                                 'AcX 2': 'max_AcX 2', 'AcY 2': 'max_AcY 2', 'AcZ 2': 'max_AcZ 2', 395                                                 'GyX 2': 'max_GyX 2', 'GyY 2': 'max_GyY 2', 'GyZ 2': 'max_GyZ 2',})396iqr_data = iqr_data.rename(index=str, columns=  {'AcX 1': 'iqr_AcX 1', 'AcY 1': 'iqr_AcY 1', 'AcZ 1': 'iqr_AcZ 1', 397                                                 'GyX 1': 'iqr_GyX 1', 'GyY 1': 'iqr_GyY 1', 'GyZ 1': 'iqr_GyZ 1',398                                                 'AcX 2': 'iqr_AcX 2', 'AcY 2': 'iqr_AcY 2', 'AcZ 2': 'iqr_AcZ 2', 399                                                 'GyX 2': 'iqr_GyX 2', 'GyY 2': 'iqr_GyY 2', 'GyZ 2': 'iqr_GyZ 2',})400activity = mean_data['activity'].copy()401mean_data = mean_data.drop(['activity'], axis = 1)402max_data = max_data.drop(['activity'], axis = 1)403iqr_data = iqr_data.drop(['activity'], axis = 1)404salute_extracted_data = mean_data.join(max_data)405salute_extracted_data = salute_extracted_data.join(iqr_data)406salute_extracted_data['activity'] = activity407#salute_extracted_data.to_csv(r'C:\Users\User\Desktop\CG3002 extracted features\salute_extracted_dataset.csv',index=False)408i=0409mean_data = pd.DataFrame()410max_data = pd.DataFrame()411iqr_data = pd.DataFrame()412for line in mermaid.iterrows():413    a = mermaid[i:i+numOfData:].copy()414    a.loc['mean'] = a.mean()415    a.loc['max'] = a.max()416    Q3 = a.quantile(0.75)417    Q1 = a.quantile(0.25)418    a.loc['iqr'] = Q3 - Q1419    mean_data = mean_data.append(a.loc['mean'], ignore_index = True)420    max_data = max_data.append(a.loc['max'], ignore_index = True)421    iqr_data = iqr_data.append(a.loc['iqr'], ignore_index = True)422    423    if( (i + overlapNum) > (numRowsOfmermaid - numOfData)):424        break425    else:426        i = i + overlapNum427mean_data = mean_data.rename(index=str, columns={'GyX 1': 'mean_GyX 1', 'GyY 1': 'mean_GyY 1', 'GyZ 1': 'mean_GyZ 1',428                                                 'AcX 1': 'mean_AcX 1', 'AcY 1': 'mean_AcY 1', 'AcZ 1': 'mean_AcZ 1',429                                                 'GyX 2': 'mean_GyX 2', 'GyY 2': 'mean_GyY 2', 'GyZ 2': 'mean_GyZ 2',430                                                 'AcX 2': 'mean_AcX 2', 'AcY 2': 'mean_AcY 2', 'AcZ 2': 'mean_AcZ 2', })431max_data = max_data.rename(index=str, columns=  {'AcX 1': 'max_AcX 1', 'AcY 1': 'max_AcY 1', 'AcZ 1': 'max_AcZ 1', 432                                                 'GyX 1': 'max_GyX 1', 'GyY 1': 'max_GyY 1', 'GyZ 1': 'max_GyZ 1',433                                                 'AcX 2': 'max_AcX 2', 'AcY 2': 'max_AcY 2', 'AcZ 2': 'max_AcZ 2', 434                                                 'GyX 2': 'max_GyX 2', 'GyY 2': 'max_GyY 2', 'GyZ 2': 'max_GyZ 2',})435iqr_data = iqr_data.rename(index=str, columns=  {'AcX 1': 'iqr_AcX 1', 'AcY 1': 'iqr_AcY 1', 'AcZ 1': 'iqr_AcZ 1', 436                                                 'GyX 1': 'iqr_GyX 1', 'GyY 1': 'iqr_GyY 1', 'GyZ 1': 'iqr_GyZ 1',437                                                 'AcX 2': 'iqr_AcX 2', 'AcY 2': 'iqr_AcY 2', 'AcZ 2': 'iqr_AcZ 2', 438                                                 'GyX 2': 'iqr_GyX 2', 'GyY 2': 'iqr_GyY 2', 'GyZ 2': 'iqr_GyZ 2',})439activity = mean_data['activity'].copy()440mean_data = mean_data.drop(['activity'], axis = 1)441max_data = max_data.drop(['activity'], axis = 1)442iqr_data = iqr_data.drop(['activity'], axis = 1)443mermaid_extracted_data = mean_data.join(max_data)444mermaid_extracted_data = mermaid_extracted_data.join(iqr_data)445mermaid_extracted_data['activity'] = activity446#mermaid_extracted_data.to_csv(r'C:\Users\User\Desktop\CG3002 extracted features\mermaid_extracted_dataset.csv',index=False)447i=0448mean_data = pd.DataFrame()449max_data = pd.DataFrame()450iqr_data = pd.DataFrame()451for line in swing.iterrows():452    a = swing[i:i+numOfData:].copy()453    a.loc['mean'] = a.mean()454    a.loc['max'] = a.max()455    Q3 = a.quantile(0.75)456    Q1 = a.quantile(0.25)457    a.loc['iqr'] = Q3 - Q1458    mean_data = mean_data.append(a.loc['mean'], ignore_index = True)459    max_data = max_data.append(a.loc['max'], ignore_index = True)460    iqr_data = iqr_data.append(a.loc['iqr'], ignore_index = True)461    462    if( (i + overlapNum) > (numRowsOfswing - numOfData)):463        break464    else:465        i = i + overlapNum466mean_data = mean_data.rename(index=str, columns={'GyX 1': 'mean_GyX 1', 'GyY 1': 'mean_GyY 1', 'GyZ 1': 'mean_GyZ 1',467                                                 'AcX 1': 'mean_AcX 1', 'AcY 1': 'mean_AcY 1', 'AcZ 1': 'mean_AcZ 1',468                                                 'GyX 2': 'mean_GyX 2', 'GyY 2': 'mean_GyY 2', 'GyZ 2': 'mean_GyZ 2',469                                                 'AcX 2': 'mean_AcX 2', 'AcY 2': 'mean_AcY 2', 'AcZ 2': 'mean_AcZ 2', })470max_data = max_data.rename(index=str, columns=  {'AcX 1': 'max_AcX 1', 'AcY 1': 'max_AcY 1', 'AcZ 1': 'max_AcZ 1', 471                                                 'GyX 1': 'max_GyX 1', 'GyY 1': 'max_GyY 1', 'GyZ 1': 'max_GyZ 1',472                                                 'AcX 2': 'max_AcX 2', 'AcY 2': 'max_AcY 2', 'AcZ 2': 'max_AcZ 2', 473                                                 'GyX 2': 'max_GyX 2', 'GyY 2': 'max_GyY 2', 'GyZ 2': 'max_GyZ 2',})474iqr_data = iqr_data.rename(index=str, columns=  {'AcX 1': 'iqr_AcX 1', 'AcY 1': 'iqr_AcY 1', 'AcZ 1': 'iqr_AcZ 1', 475                                                 'GyX 1': 'iqr_GyX 1', 'GyY 1': 'iqr_GyY 1', 'GyZ 1': 'iqr_GyZ 1',476                                                 'AcX 2': 'iqr_AcX 2', 'AcY 2': 'iqr_AcY 2', 'AcZ 2': 'iqr_AcZ 2', 477                                                 'GyX 2': 'iqr_GyX 2', 'GyY 2': 'iqr_GyY 2', 'GyZ 2': 'iqr_GyZ 2',})478activity = mean_data['activity'].copy()479mean_data = mean_data.drop(['activity'], axis = 1)480max_data = max_data.drop(['activity'], axis = 1)481iqr_data = iqr_data.drop(['activity'], axis = 1)482swing_extracted_data = mean_data.join(max_data)483swing_extracted_data = swing_extracted_data.join(iqr_data)484swing_extracted_data['activity'] = activity485#swing_extracted_data.to_csv(r'C:\Users\User\Desktop\CG3002 extracted features\swing_extracted_dataset.csv',index=False)486i=0487mean_data = pd.DataFrame()488max_data = pd.DataFrame()489iqr_data = pd.DataFrame()490for line in cowboy.iterrows():491    a = cowboy[i:i+numOfData:].copy()492    a.loc['mean'] = a.mean()493    a.loc['max'] = a.max()494    Q3 = a.quantile(0.75)495    Q1 = a.quantile(0.25)496    a.loc['iqr'] = Q3 - Q1497    mean_data = mean_data.append(a.loc['mean'], ignore_index = True)498    max_data = max_data.append(a.loc['max'], ignore_index = True)499    iqr_data = iqr_data.append(a.loc['iqr'], ignore_index = True)500    501    if( (i + overlapNum) > (numRowsOfcowboy - numOfData)):502        break503    else:504        i = i + overlapNum505mean_data = mean_data.rename(index=str, columns={'GyX 1': 'mean_GyX 1', 'GyY 1': 'mean_GyY 1', 'GyZ 1': 'mean_GyZ 1',506                                                 'AcX 1': 'mean_AcX 1', 'AcY 1': 'mean_AcY 1', 'AcZ 1': 'mean_AcZ 1',507                                                 'GyX 2': 'mean_GyX 2', 'GyY 2': 'mean_GyY 2', 'GyZ 2': 'mean_GyZ 2',508                                                 'AcX 2': 'mean_AcX 2', 'AcY 2': 'mean_AcY 2', 'AcZ 2': 'mean_AcZ 2', })509max_data = max_data.rename(index=str, columns=  {'AcX 1': 'max_AcX 1', 'AcY 1': 'max_AcY 1', 'AcZ 1': 'max_AcZ 1', 510                                                 'GyX 1': 'max_GyX 1', 'GyY 1': 'max_GyY 1', 'GyZ 1': 'max_GyZ 1',511                                                 'AcX 2': 'max_AcX 2', 'AcY 2': 'max_AcY 2', 'AcZ 2': 'max_AcZ 2', 512                                                 'GyX 2': 'max_GyX 2', 'GyY 2': 'max_GyY 2', 'GyZ 2': 'max_GyZ 2',})513iqr_data = iqr_data.rename(index=str, columns=  {'AcX 1': 'iqr_AcX 1', 'AcY 1': 'iqr_AcY 1', 'AcZ 1': 'iqr_AcZ 1', 514                                                 'GyX 1': 'iqr_GyX 1', 'GyY 1': 'iqr_GyY 1', 'GyZ 1': 'iqr_GyZ 1',515                                                 'AcX 2': 'iqr_AcX 2', 'AcY 2': 'iqr_AcY 2', 'AcZ 2': 'iqr_AcZ 2', 516                                                 'GyX 2': 'iqr_GyX 2', 'GyY 2': 'iqr_GyY 2', 'GyZ 2': 'iqr_GyZ 2',})517activity = mean_data['activity'].copy()518mean_data = mean_data.drop(['activity'], axis = 1)519max_data = max_data.drop(['activity'], axis = 1)520iqr_data = iqr_data.drop(['activity'], axis = 1)521cowboy_extracted_data = mean_data.join(max_data)522cowboy_extracted_data = cowboy_extracted_data.join(iqr_data)523cowboy_extracted_data['activity'] = activity524#cowboy_extracted_data.to_csv(r'C:\Users\User\Desktop\CG3002 extracted features\cowboy_extracted_dataset.csv',index=False)525i=0526mean_data = pd.DataFrame()527max_data = pd.DataFrame()528iqr_data = pd.DataFrame()529for line in bow.iterrows():530    a = bow[i:i+numOfData:].copy()531    a.loc['mean'] = a.mean()532    a.loc['max'] = a.max()533    Q3 = a.quantile(0.75)534    Q1 = a.quantile(0.25)535    a.loc['iqr'] = Q3 - Q1536    mean_data = mean_data.append(a.loc['mean'], ignore_index = True)537    max_data = max_data.append(a.loc['max'], ignore_index = True)538    iqr_data = iqr_data.append(a.loc['iqr'], ignore_index = True)539    540    if( (i + overlapNum) > (numRowsOfbow - numOfData)):541        break542    else:543        i = i + overlapNum544mean_data = mean_data.rename(index=str, columns={'GyX 1': 'mean_GyX 1', 'GyY 1': 'mean_GyY 1', 'GyZ 1': 'mean_GyZ 1',545                                                 'AcX 1': 'mean_AcX 1', 'AcY 1': 'mean_AcY 1', 'AcZ 1': 'mean_AcZ 1',546                                                 'GyX 2': 'mean_GyX 2', 'GyY 2': 'mean_GyY 2', 'GyZ 2': 'mean_GyZ 2',547                                                 'AcX 2': 'mean_AcX 2', 'AcY 2': 'mean_AcY 2', 'AcZ 2': 'mean_AcZ 2', })548max_data = max_data.rename(index=str, columns=  {'AcX 1': 'max_AcX 1', 'AcY 1': 'max_AcY 1', 'AcZ 1': 'max_AcZ 1', 549                                                 'GyX 1': 'max_GyX 1', 'GyY 1': 'max_GyY 1', 'GyZ 1': 'max_GyZ 1',550                                                 'AcX 2': 'max_AcX 2', 'AcY 2': 'max_AcY 2', 'AcZ 2': 'max_AcZ 2', 551                                                 'GyX 2': 'max_GyX 2', 'GyY 2': 'max_GyY 2', 'GyZ 2': 'max_GyZ 2',})552iqr_data = iqr_data.rename(index=str, columns=  {'AcX 1': 'iqr_AcX 1', 'AcY 1': 'iqr_AcY 1', 'AcZ 1': 'iqr_AcZ 1', 553                                                 'GyX 1': 'iqr_GyX 1', 'GyY 1': 'iqr_GyY 1', 'GyZ 1': 'iqr_GyZ 1',554                                                 'AcX 2': 'iqr_AcX 2', 'AcY 2': 'iqr_AcY 2', 'AcZ 2': 'iqr_AcZ 2', 555                                                 'GyX 2': 'iqr_GyX 2', 'GyY 2': 'iqr_GyY 2', 'GyZ 2': 'iqr_GyZ 2',})556activity = mean_data['activity'].copy()557mean_data = mean_data.drop(['activity'], axis = 1)558max_data = max_data.drop(['activity'], axis = 1)559iqr_data = iqr_data.drop(['activity'], axis = 1)560bow_extracted_data = mean_data.join(max_data)561bow_extracted_data = bow_extracted_data.join(iqr_data)562bow_extracted_data['activity'] = activity563#bow_extracted_data.to_csv(r'C:\Users\User\Desktop\CG3002 extracted features\bow_extracted_dataset.csv',index=False)564i=0565mean_data = pd.DataFrame()566max_data = pd.DataFrame()567iqr_data = pd.DataFrame()568for line in sidestep2.iterrows():569    a = sidestep2[i:i+numOfData:].copy()570    a.loc['mean'] = a.mean()571    a.loc['max'] = a.max()572    Q3 = a.quantile(0.75)573    Q1 = a.quantile(0.25)574    a.loc['iqr'] = Q3 - Q1575    mean_data = mean_data.append(a.loc['mean'], ignore_index = True)576    max_data = max_data.append(a.loc['max'], ignore_index = True)577    iqr_data = iqr_data.append(a.loc['iqr'], ignore_index = True)578    579    if( (i + overlapNum) > (numRowsOfsidestep2 - numOfData)):580        break581    else:582        i = i + overlapNum583mean_data = mean_data.rename(index=str, columns={'GyX 1': 'mean_GyX 1', 'GyY 1': 'mean_GyY 1', 'GyZ 1': 'mean_GyZ 1',584                                                 'AcX 1': 'mean_AcX 1', 'AcY 1': 'mean_AcY 1', 'AcZ 1': 'mean_AcZ 1',585                                                 'GyX 2': 'mean_GyX 2', 'GyY 2': 'mean_GyY 2', 'GyZ 2': 'mean_GyZ 2',586                                                 'AcX 2': 'mean_AcX 2', 'AcY 2': 'mean_AcY 2', 'AcZ 2': 'mean_AcZ 2', })587max_data = max_data.rename(index=str, columns=  {'AcX 1': 'max_AcX 1', 'AcY 1': 'max_AcY 1', 'AcZ 1': 'max_AcZ 1', 588                                                 'GyX 1': 'max_GyX 1', 'GyY 1': 'max_GyY 1', 'GyZ 1': 'max_GyZ 1',589                                                 'AcX 2': 'max_AcX 2', 'AcY 2': 'max_AcY 2', 'AcZ 2': 'max_AcZ 2', 590                                                 'GyX 2': 'max_GyX 2', 'GyY 2': 'max_GyY 2', 'GyZ 2': 'max_GyZ 2',})591iqr_data = iqr_data.rename(index=str, columns=  {'AcX 1': 'iqr_AcX 1', 'AcY 1': 'iqr_AcY 1', 'AcZ 1': 'iqr_AcZ 1', 592                                                 'GyX 1': 'iqr_GyX 1', 'GyY 1': 'iqr_GyY 1', 'GyZ 1': 'iqr_GyZ 1',593                                                 'AcX 2': 'iqr_AcX 2', 'AcY 2': 'iqr_AcY 2', 'AcZ 2': 'iqr_AcZ 2', 594                                                 'GyX 2': 'iqr_GyX 2', 'GyY 2': 'iqr_GyY 2', 'GyZ 2': 'iqr_GyZ 2',})595activity = mean_data['activity'].copy()596mean_data = mean_data.drop(['activity'], axis = 1)597max_data = max_data.drop(['activity'], axis = 1)598iqr_data = iqr_data.drop(['activity'], axis = 1)599sidestep2_extracted_data = mean_data.join(max_data)600sidestep2_extracted_data = sidestep2_extracted_data.join(iqr_data)601sidestep2_extracted_data['activity'] = activity602#sidestep2_extracted_data.to_csv(r'C:\Users\User\Desktop\CG3002 extracted features\sidestep2_extracted_dataset.csv',index=False)603i=0604mean_data = pd.DataFrame()605max_data = pd.DataFrame()606iqr_data = pd.DataFrame()607for line in turnclap2.iterrows():608    a = turnclap2[i:i+numOfData:].copy()609    a.loc['mean'] = a.mean()610    a.loc['max'] = a.max()611    Q3 = a.quantile(0.75)612    Q1 = a.quantile(0.25)613    a.loc['iqr'] = Q3 - Q1614    mean_data = mean_data.append(a.loc['mean'], ignore_index = True)615    max_data = max_data.append(a.loc['max'], ignore_index = True)616    iqr_data = iqr_data.append(a.loc['iqr'], ignore_index = True)617    618    if( (i + overlapNum) > (numRowsOfturnclap2 - numOfData)):619        break620    else:621        i = i + overlapNum622mean_data = mean_data.rename(index=str, columns={'GyX 1': 'mean_GyX 1', 'GyY 1': 'mean_GyY 1', 'GyZ 1': 'mean_GyZ 1',623                                                 'AcX 1': 'mean_AcX 1', 'AcY 1': 'mean_AcY 1', 'AcZ 1': 'mean_AcZ 1',624                                                 'GyX 2': 'mean_GyX 2', 'GyY 2': 'mean_GyY 2', 'GyZ 2': 'mean_GyZ 2',625                                                 'AcX 2': 'mean_AcX 2', 'AcY 2': 'mean_AcY 2', 'AcZ 2': 'mean_AcZ 2', })626max_data = max_data.rename(index=str, columns=  {'AcX 1': 'max_AcX 1', 'AcY 1': 'max_AcY 1', 'AcZ 1': 'max_AcZ 1', 627                                                 'GyX 1': 'max_GyX 1', 'GyY 1': 'max_GyY 1', 'GyZ 1': 'max_GyZ 1',628                                                 'AcX 2': 'max_AcX 2', 'AcY 2': 'max_AcY 2', 'AcZ 2': 'max_AcZ 2', 629                                                 'GyX 2': 'max_GyX 2', 'GyY 2': 'max_GyY 2', 'GyZ 2': 'max_GyZ 2',})630iqr_data = iqr_data.rename(index=str, columns=  {'AcX 1': 'iqr_AcX 1', 'AcY 1': 'iqr_AcY 1', 'AcZ 1': 'iqr_AcZ 1', 631                                                 'GyX 1': 'iqr_GyX 1', 'GyY 1': 'iqr_GyY 1', 'GyZ 1': 'iqr_GyZ 1',632                                                 'AcX 2': 'iqr_AcX 2', 'AcY 2': 'iqr_AcY 2', 'AcZ 2': 'iqr_AcZ 2', 633                                                 'GyX 2': 'iqr_GyX 2', 'GyY 2': 'iqr_GyY 2', 'GyZ 2': 'iqr_GyZ 2',})634activity = mean_data['activity'].copy()635mean_data = mean_data.drop(['activity'], axis = 1)636max_data = max_data.drop(['activity'], axis = 1)637iqr_data = iqr_data.drop(['activity'], axis = 1)638turnclap2_extracted_data = mean_data.join(max_data)639turnclap2_extracted_data = turnclap2_extracted_data.join(iqr_data)640turnclap2_extracted_data['activity'] = activity641#turnclap2_extracted_data.to_csv(r'C:\Users\User\Desktop\CG3002 extracted features\turnclap2_extracted_dataset.csv',index=False)642i=0643mean_data = pd.DataFrame()644max_data = pd.DataFrame()645iqr_data = pd.DataFrame()646for line in cowboy2.iterrows():647    a = cowboy2[i:i+numOfData:].copy()648    a.loc['mean'] = a.mean()649    a.loc['max'] = a.max()650    Q3 = a.quantile(0.75)651    Q1 = a.quantile(0.25)652    a.loc['iqr'] = Q3 - Q1653    mean_data = mean_data.append(a.loc['mean'], ignore_index = True)654    max_data = max_data.append(a.loc['max'], ignore_index = True)655    iqr_data = iqr_data.append(a.loc['iqr'], ignore_index = True)656    657    if( (i + overlapNum) > (numRowsOfcowboy2 - numOfData)):658        break659    else:660        i = i + overlapNum661mean_data = mean_data.rename(index=str, columns={'GyX 1': 'mean_GyX 1', 'GyY 1': 'mean_GyY 1', 'GyZ 1': 'mean_GyZ 1',662                                                 'AcX 1': 'mean_AcX 1', 'AcY 1': 'mean_AcY 1', 'AcZ 1': 'mean_AcZ 1',663                                                 'GyX 2': 'mean_GyX 2', 'GyY 2': 'mean_GyY 2', 'GyZ 2': 'mean_GyZ 2',664                                                 'AcX 2': 'mean_AcX 2', 'AcY 2': 'mean_AcY 2', 'AcZ 2': 'mean_AcZ 2', })665max_data = max_data.rename(index=str, columns=  {'AcX 1': 'max_AcX 1', 'AcY 1': 'max_AcY 1', 'AcZ 1': 'max_AcZ 1', 666                                                 'GyX 1': 'max_GyX 1', 'GyY 1': 'max_GyY 1', 'GyZ 1': 'max_GyZ 1',667                                                 'AcX 2': 'max_AcX 2', 'AcY 2': 'max_AcY 2', 'AcZ 2': 'max_AcZ 2', 668                                                 'GyX 2': 'max_GyX 2', 'GyY 2': 'max_GyY 2', 'GyZ 2': 'max_GyZ 2',})669iqr_data = iqr_data.rename(index=str, columns=  {'AcX 1': 'iqr_AcX 1', 'AcY 1': 'iqr_AcY 1', 'AcZ 1': 'iqr_AcZ 1', 670                                                 'GyX 1': 'iqr_GyX 1', 'GyY 1': 'iqr_GyY 1', 'GyZ 1': 'iqr_GyZ 1',671                                                 'AcX 2': 'iqr_AcX 2', 'AcY 2': 'iqr_AcY 2', 'AcZ 2': 'iqr_AcZ 2', 672                                                 'GyX 2': 'iqr_GyX 2', 'GyY 2': 'iqr_GyY 2', 'GyZ 2': 'iqr_GyZ 2',})673activity = mean_data['activity'].copy()674mean_data = mean_data.drop(['activity'], axis = 1)675max_data = max_data.drop(['activity'], axis = 1)676iqr_data = iqr_data.drop(['activity'], axis = 1)677cowboy2_extracted_data = mean_data.join(max_data)678cowboy2_extracted_data = cowboy2_extracted_data.join(iqr_data)679cowboy2_extracted_data['activity'] = activity680#cowboy2_extracted_data.to_csv(r'C:\Users\User\Desktop\CG3002 extracted features\cowboy2_extracted_dataset.csv',index=False)681frames = [neutral_extracted_data, wipers_extracted_data, number7_extracted_data, chicken_extracted_data, sidestep_extracted_data, turnclap_extracted_data, 682          number6_extracted_data, salute_extracted_data, mermaid_extracted_data, swing_extracted_data, cowboy_extracted_data, bow_extracted_data,683          sidestep2_extracted_data, turnclap2_extracted_data, cowboy2_extracted_data]684extracted_data = pd.concat(frames)685#extracted_data.to_csv(r'C:\Users\User\Desktop\CG3002 extracted features\eryao_extracted_dataset.csv',index=False)686#extracted_data.to_csv(r'C:\Users\User\Desktop\CG3002 extracted features\yupeng_extracted_dataset.csv',index=False)687#extracted_data.to_csv(r'C:\Users\User\Desktop\CG3002 extracted features\fuad_extracted_dataset.csv',index=False)688extracted_data.to_csv(r'C:\Users\User\Desktop\CG3002 extracted features\melvin_extracted_dataset.csv',index=False)689#extracted_data.to_csv(r'C:\Users\User\Desktop\CG3002 extracted features\ben_extracted_dataset.csv',index=False)...box_plot.py
Source:box_plot.py  
1# Write on 2017/08/28 by Chuan.Sun2import numpy as np3import pandas as pd4from pandasql import sqldf5from sklearn.preprocessing import MinMaxScaler6pysqldf = lambda q: sqldf(q, globals())7data = pd.read_excel('D:/KA.xlsx')8look_up_table = pd.read_excel('D:/lookup_table.xlsx')9# éæ©è®ç»éï¼å³æè¿90天çå岿°æ®10data_fit = pysqldf("SELECT  * FROM data where dt<='2017-08-28';")11# å°æ°æ®æç
§æ¶é´ç»´åº¦è¿è¡listå12data_fit_group = data.join(13    data_fit.groupby(['aera_region', 'province_name', 'first_category', 'target'])['valid_cnt'].apply(list).to_frame(14        'target_list'), on=['aera_region', 'province_name', 'first_category', 'target'])15print(data_fit_group.shape)16# 鿩颿µæ°æ®ï¼åå°æ°æ®è®¡ç®é,å
³èlookup_table17data_fit_group_transform = data_fit_group[data_fit_group['dt'] == '2017-08-28'].merge(look_up_table, left_on='target',18                                                                                      right_on='target_code')19print(data_fit_group_transform.shape)20# è®¡ç®æ°æ®åä½ç¹21data_fit_group_transform.loc[:, 'IQR'] = data_fit_group_transform.loc[:, 'target_list'].apply(22    lambda x: np.percentile(x, 75) - np.percentile(x, 25))23data_fit_group_transform.loc[:, 'Q3'] = data_fit_group_transform.loc[:, 'target_list'].apply(24    lambda x: np.percentile(x, 75))25data_fit_group_transform.loc[:, 'Q1'] = data_fit_group_transform.loc[:, 'target_list'].apply(26    lambda x: np.percentile(x, 25))27data_fit_group_transform.loc[:, 'Q3_plus_1_5IQR'] = data_fit_group_transform.loc[:, 'target_list'].apply(28    lambda x: np.percentile(x, 75)) + 1.5 * data_fit_group_transform.loc[:, 'IQR']29data_fit_group_transform.loc[:, 'Q3_plus_3IQR'] = data_fit_group_transform.loc[:, 'target_list'].apply(30    lambda x: np.percentile(x, 75)) + 3 * data_fit_group_transform.loc[:, 'IQR']31data_fit_group_transform.loc[:, 'Q1_minus_1_5IQR'] = data_fit_group_transform.loc[:, 'target_list'].apply(32    lambda x: np.percentile(x, 25)) - 1.5 * data_fit_group_transform.loc[:, 'IQR']33data_fit_group_transform.loc[:, 'Q1_minus_3IQR'] = data_fit_group_transform.loc[:, 'target_list'].apply(34    lambda x: np.percentile(x, 25)) - 3 * data_fit_group_transform.loc[:, 'IQR']35# å å
¥å¯¹IQR为0æ°æ®çå·²å¤ç36data_fit_group_transform_IQR_filter = data_fit_group_transform[data_fit_group_transform['IQR'] > 0]37data_fit_group_transform_IQR = data_fit_group_transform[data_fit_group_transform['IQR'] == 0]38# å¼å¸¸å¤æ39# æ£å¸¸40cond1 = (data_fit_group_transform_IQR_filter.loc[:, 'valid_cnt'] <= data_fit_group_transform_IQR_filter.loc[:,41                                                                    'Q3_plus_1_5IQR']) & (42            data_fit_group_transform_IQR_filter.loc[:, 'valid_cnt'] >= data_fit_group_transform_IQR_filter.loc[:,43                                                                       'Q1_minus_1_5IQR'])44# æ©è²åè¦45cond2_1 = ((data_fit_group_transform_IQR_filter.loc[:, 'valid_cnt'] < data_fit_group_transform_IQR_filter.loc[:,46                                                                      'Q1_minus_1_5IQR']) & (47               data_fit_group_transform_IQR_filter.loc[:, 'valid_cnt'] >= data_fit_group_transform_IQR_filter.loc[:,48                                                                          'Q1_minus_3IQR']))49cond2_2 = ((data_fit_group_transform_IQR_filter.loc[:, 'valid_cnt'] > data_fit_group_transform_IQR_filter.loc[:,50                                                                      'Q3_plus_1_5IQR']) & (51               data_fit_group_transform_IQR_filter.loc[:, 'valid_cnt'] <= data_fit_group_transform_IQR_filter.loc[:,52                                                                          'Q3_plus_3IQR']))53cond2 = cond2_1 | cond2_254# 红è²åè¦55cond3_1 = (56    data_fit_group_transform_IQR_filter.loc[:, 'valid_cnt'] < data_fit_group_transform_IQR_filter.loc[:,57                                                              'Q1_minus_3IQR'])58cond3_2 = (59    data_fit_group_transform_IQR_filter.loc[:, 'valid_cnt'] > data_fit_group_transform_IQR_filter.loc[:,60                                                              'Q3_plus_3IQR'])61cond3 = cond3_1 | cond3_262# åè¦ç»æ63rst2_1 = 10 * data_fit_group_transform_IQR_filter.loc[:, 'target_normalize'] * (64abs(data_fit_group_transform_IQR_filter.loc[:, 'valid_cnt'] - data_fit_group_transform_IQR_filter.loc[:,65                                                              'Q1_minus_1_5IQR']) / data_fit_group_transform_IQR_filter.loc[66                                                                                    :, 'IQR'])67rst2_2 = 10 * data_fit_group_transform_IQR_filter.loc[:, 'target_normalize'] * (68abs(data_fit_group_transform_IQR_filter.loc[:, 'valid_cnt'] - data_fit_group_transform_IQR_filter.loc[:,69                                                              'Q3_plus_1_5IQR']) / data_fit_group_transform_IQR_filter.loc[70                                                                                   :, 'IQR'])71rst3_1 = 20 * data_fit_group_transform_IQR_filter.loc[:, 'target_normalize'] * (72abs(data_fit_group_transform_IQR_filter.loc[:, 'valid_cnt'] - data_fit_group_transform_IQR_filter.loc[:,73                                                              'Q1_minus_3IQR']) / data_fit_group_transform_IQR_filter.loc[74                                                                                  :, 'IQR'])75rst3_2 = 20 * data_fit_group_transform_IQR_filter.loc[:, 'target_normalize'] * (76abs(data_fit_group_transform_IQR_filter.loc[:, 'valid_cnt'] - data_fit_group_transform_IQR_filter.loc[:,77                                                              'Q3_plus_3IQR']) / data_fit_group_transform_IQR_filter.loc[78                                                                                 :, 'IQR'])79# å¼å¸¸ç级计ç®80data_fit_group_transform_IQR_filter.loc[:, 'abnormal_level'] = np.where(cond1, 0, np.where(cond2_1, rst2_1,81                                                                                           np.where(cond2_2, rst2_2,82                                                                                                    np.where(cond3_1,83                                                                                                             rst3_1,84                                                                                                             rst3_2))))85data_fit_group_transform_IQR_filter.loc[:, 'abnormal_level_name'] = np.where(cond1, 'æ£å¸¸', np.where(cond2_1, 'å¼å¸¸ä½',86                                                                                                   np.where(cond2_2,87                                                                                                            'å¼å¸¸é«',88                                                                                                            np.where(89                                                                                                                cond3_1,90                                                                                                                'é常ä½',91                                                                                                                'é常é«'))))92# 计ç®å¼å¸¸å¼93data_fit_group_transform_IQR_filter.loc[:, 'monitor_result'] = data_fit_group_transform_IQR_filter.loc[94                                                               :, 'abnormal_level']95data_fit_group_transform_IQR_filter.loc[:, 'monitor_result_normalize'] = 096# 夿æ¯å¦æå¯¹åºçå¼å¸¸é¡¹ï¼åºåä¸åçå¼å¸¸ççº§ä»¥åææ çæ£è´ç¸å
³æ§ï¼åå«è¿è¡ææ å½ä¸å97if data_fit_group_transform_IQR_filter[data_fit_group_transform_IQR_filter['abnormal_level_name'] == 'æ£å¸¸'].shape[0] > 0:98    data_fit_group_transform_IQR_filter.ix[99        data_fit_group_transform_IQR_filter['abnormal_level_name'] == 'æ£å¸¸', 'monitor_result_normalize'] = 80100# æ©è²åè¦ââå¼å¸¸ä½101if data_fit_group_transform_IQR_filter[(102            data_fit_group_transform_IQR_filter['abnormal_level_name'] == 'å¼å¸¸ä½') & (103            data_fit_group_transform_IQR_filter[104                'correlation'] == 1)].shape[105    0] > 0:106    data_fit_group_transform_IQR_filter.ix[(data_fit_group_transform_IQR_filter['abnormal_level_name'] == 'å¼å¸¸ä½') & (107        data_fit_group_transform_IQR_filter['correlation'] == 1), 'monitor_result_normalize'] = MinMaxScaler(108        feature_range=(-0.5, 0.5)).fit_transform(np.array(data_fit_group_transform_IQR_filter.ix[109                                                              (data_fit_group_transform_IQR_filter[110                                                                   'abnormal_level_name'] == 'å¼å¸¸ä½') & (111                                                                  data_fit_group_transform_IQR_filter[112                                                                      'correlation'] == 1), 'monitor_result']).reshape(113        -1, 1)) * 40 + 60114if data_fit_group_transform_IQR_filter[(115            data_fit_group_transform_IQR_filter['abnormal_level_name'] == 'å¼å¸¸ä½') & (116            data_fit_group_transform_IQR_filter['correlation'] == -1)].shape[0] > 0:117    data_fit_group_transform_IQR_filter.ix[118        (data_fit_group_transform_IQR_filter['abnormal_level_name'] == 'å¼å¸¸ä½') & (data_fit_group_transform_IQR_filter[119                                                                                     'correlation'] == -1), 'monitor_result_normalize'] = MinMaxScaler().fit_transform(120        np.array(data_fit_group_transform_IQR_filter.ix[121                     (data_fit_group_transform_IQR_filter['abnormal_level_name'] == 'å¼å¸¸ä½') & (122                         data_fit_group_transform_IQR_filter[123                             'correlation'] == -1), 'monitor_result']).reshape(-1, 1)) * (-10) + 90124# 红è²åè¦ââé常ä½125if data_fit_group_transform_IQR_filter[(126            data_fit_group_transform_IQR_filter['abnormal_level_name'] == 'é常ä½') & (data_fit_group_transform_IQR_filter[127                                                                                        'correlation'] == 1)].shape[128    0] > 0:129    data_fit_group_transform_IQR_filter.ix[130        (data_fit_group_transform_IQR_filter['abnormal_level_name'] == 'é常ä½') & (data_fit_group_transform_IQR_filter[131                                                                                     'correlation'] == 1), 'monitor_result_normalize'] = MinMaxScaler(132        feature_range=(-0.5, 0.5)).fit_transform(np.array(data_fit_group_transform_IQR_filter.ix[(133                                                                                                     data_fit_group_transform_IQR_filter[134                                                                                                         'abnormal_level_name'] == 'é常ä½') & (135                                                                                                     data_fit_group_transform_IQR_filter[136                                                                                                         'correlation'] == 1), 'monitor_result']).reshape(137        -1, 1)138    ) * 40 + 20139if data_fit_group_transform_IQR_filter[(140            data_fit_group_transform_IQR_filter['abnormal_level_name'] == 'é常ä½') & (141            data_fit_group_transform_IQR_filter[142                'correlation'] == -1)].shape[143    0] > 0:144    data_fit_group_transform_IQR_filter.ix[(145                                               data_fit_group_transform_IQR_filter['abnormal_level_name'] == 'é常ä½') & (146                                               data_fit_group_transform_IQR_filter[147                                                   'correlation'] == -1), 'monitor_result_normalize'] = MinMaxScaler().fit_transform(148        np.array(data_fit_group_transform_IQR_filter.ix[(149                                                            data_fit_group_transform_IQR_filter[150                                                                'abnormal_level_name'] == 'é常ä½') & (151                                                            data_fit_group_transform_IQR_filter[152                                                                'correlation'] == -1), 'monitor_result']).reshape(-1, 1)153    ) * (-10) + 100154# æ©è²åè¦ââå¼å¸¸é«155if data_fit_group_transform_IQR_filter[(data_fit_group_transform_IQR_filter['abnormal_level_name'] == 'å¼å¸¸é«') & (156            data_fit_group_transform_IQR_filter[157                'correlation'] == 1)].shape[158    0] > 0:159    data_fit_group_transform_IQR_filter.ix[160        (data_fit_group_transform_IQR_filter['abnormal_level_name'] == 'å¼å¸¸é«') & (data_fit_group_transform_IQR_filter[161                                                                                     'correlation'] == 1), 'monitor_result_normalize'] = MinMaxScaler().fit_transform(162        np.array(data_fit_group_transform_IQR_filter.ix[(163                                                            data_fit_group_transform_IQR_filter[164                                                                'abnormal_level_name'] == 'å¼å¸¸é«') & (165                                                            data_fit_group_transform_IQR_filter[166                                                                'correlation'] == 1), 'monitor_result']).reshape(-1, 1)167    ) * 10 + 80168if data_fit_group_transform_IQR_filter[(169            data_fit_group_transform_IQR_filter['abnormal_level_name'] == 'å¼å¸¸é«') & (170            data_fit_group_transform_IQR_filter[171                'correlation'] == -1)].shape[172    0] > 0:173    data_fit_group_transform_IQR_filter.ix[174        (data_fit_group_transform_IQR_filter['abnormal_level_name'] == 'å¼å¸¸é«') & (data_fit_group_transform_IQR_filter[175                                                                                     'correlation'] == -1), 'monitor_result_normalize'] = MinMaxScaler(176        feature_range=(-0.5, 0.5)).fit_transform(np.array(data_fit_group_transform_IQR_filter.ix[(177                                                                                                     data_fit_group_transform_IQR_filter[178                                                                                                         'abnormal_level_name'] == 'å¼å¸¸é«') & (179                                                                                                     data_fit_group_transform_IQR_filter[180                                                                                                         'correlation'] == -1), 'monitor_result']).reshape(181        -1, 1)182    ) * (-40) + 60183# 红è²åè¦ââé常é«184if data_fit_group_transform_IQR_filter[(data_fit_group_transform_IQR_filter['abnormal_level_name'] == 'é常é«') & (185            data_fit_group_transform_IQR_filter[186                'correlation'] == 1)].shape[187    0] > 0:188    data_fit_group_transform_IQR_filter.ix[(data_fit_group_transform_IQR_filter[189                                                'abnormal_level_name'] == 'é常é«') & (data_fit_group_transform_IQR_filter[190                                                                                        'correlation'] == 1), 'monitor_result_normalize'] = MinMaxScaler().fit_transform(191        np.array(data_fit_group_transform_IQR_filter.ix[(192                                                            data_fit_group_transform_IQR_filter[193                                                                'abnormal_level_name'] == 'é常é«') & (194                                                            data_fit_group_transform_IQR_filter[195                                                                'correlation'] == 1), 'monitor_result']).reshape(-1, 1)196    ) * 10 + 90197if data_fit_group_transform_IQR_filter[(198            data_fit_group_transform_IQR_filter['abnormal_level_name'] == 'é常é«') & (199            data_fit_group_transform_IQR_filter[200                'correlation'] == -1)].shape[201    0] > 0:202    data_fit_group_transform_IQR_filter.ix[(data_fit_group_transform_IQR_filter['abnormal_level_name'] == 'é常é«') & (203        data_fit_group_transform_IQR_filter['correlation'] == -1), 'monitor_result_normalize'] = MinMaxScaler(204        feature_range=(-0.5, 0.5)).fit_transform(np.array(data_fit_group_transform_IQR_filter.ix[(205                                                                                                     data_fit_group_transform_IQR_filter[206                                                                                                         'abnormal_level_name'] == 'é常é«') & (207                                                                                                     data_fit_group_transform_IQR_filter[208                                                                                                         'correlation'] == -1), 'monitor_result']).reshape(209        -1, 1)210    ) * (-40) + 20211# MinMaxScaler(feature_range=(-0.5,0.5)).fit_transform(212# data_fit_group_transform_IQR_filter.loc[:, 'monitor_result']) * 80+60213# å¤çIQR为0æ°æ®ï¼é»è®¤å°ç»æç½®ä¸º60ï¼å°å¼å¸¸ç级置为214data_fit_group_transform_IQR.loc[:, 'monitor_result'] = 60215data_fit_group_transform_IQR.loc[:, 'monitor_result_normalize'] = 60216data_fit_group_transform_IQR.loc[:, 'abnormal_level_name'] = 'æ æ³¢å¨'217data_fit_group_transform_final = data_fit_group_transform_IQR_filter.append(data_fit_group_transform_IQR)218# print(data_fit_group_transform_final.head(10))219# print(data_fit_group_transform_final.head(1))220# print(data_fit_group_transform_final.round({'monitor_result_normalize': 2}).head(1))221# print(data_fit_group_transform_final.dtypes)222# data_fit_group_transform_final['monitor_result_normalize']=np.round(data_fit_group_transform_final['monitor_result_normalize'],3)223# print(np.round(data_fit_group_transform_final['monitor_result_normalize'], 3).head(10))224# data_fit_group_transform_final.round({'monitor_result_normalize': 2})225# print(data_fit_group_transform_final['monitor_result_normalize'].head(100))226data_fit_group_transform_final.to_csv('D:/1.csv')227# print(data_fit_group_transform_result.head(10))228# data_group['IQR']= np.percentile(data_group['target_list'].values,0.75)229# data_group['IQR']= np.percentile(data_group['target_list'].values,0.75)-np.percentile(data_group['target_list'],0.25)230# print(data_group.head(10))231# print(data_group_area)232# for area_x in area:233# ,'shop_brand_name','first_category','target'234# data_group = pd.DataFrame(data.groupby(['aera_region','province_name','city_name']).apply(lambda x: list(x.valid_cnt)))235# data_group.columns =['aera_region','province_name','city_name','target_list']...EfficientSummaries.py
Source:EfficientSummaries.py  
...9sales = pd.read_csv('sales_subset.csv')10# Instructions11# 1. Use the custom iqr function defined for you along with .agg() to print the IQR of the temperature_c column of sales.12# A custom IQR function13def iqr(column):14    return column.quantile(0.75) - column.quantile(0.25)15    16# Print IQR of the temperature_c column17print(sales['temperature_c'].agg(iqr))18# 2. Update the column selection to use the custom iqr function with .agg() to print the IQR of temperature_c, fuel_price_usd_per_l, and unemployment, in that order.19# A custom IQR function20def iqr(column):21    return column.quantile(0.75) - column.quantile(0.25)22# Update to print IQR of temperature_c, fuel_price_usd_per_l, & unemployment23print(sales[["temperature_c", 'fuel_price_usd_per_l', 'unemployment']].agg(iqr))24# 3. Update the aggregation functions called by .agg(): include iqr and np.median in that order.25# Import NumPy and create custom IQR function26import numpy as np27def iqr(column):28    return column.quantile(0.75) - column.quantile(0.25)29# Update to print IQR and median of temperature_c, fuel_price_usd_per_l, & unemployment30print(sales[["temperature_c", "fuel_price_usd_per_l", "unemployment"]].agg([iqr, np.median]))31# Excellent efficiency! ...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
