Best Python code snippet using pytest-benchmark
reweight_groundtruth_plotter.py
Source:reweight_groundtruth_plotter.py  
...73    y_hat2_3 = lowess(y, x) # note, default frac=2/374    y_hat1_5 = lowess(y, x, frac=1/5)75    y_hat1_4 = lowess(y, x, frac=1/4)76    y_hat1_7 = lowess(y, x, frac=1/7)77    print(test_monotonic(y_hat1_4))78    print(get_LOWESS_degree_by_ratio(y_hat1_4, -3))79    80    if(input('DO YOU WANT TO PLOT THE FILTERED RESULT? (y/n)')=='y'):81        fig = px.scatter(df, x=df['Phi [deg]'], y=df['SUM-DIFF'], opacity=0.8, color_discrete_sequence=['black'])82        fig.add_traces(go.Scatter(x=y_hat2_3[:,0], y=y_hat2_3[:,1], name='LOWESS, frac=2/3', line=dict(color='red')))83        fig.add_traces(go.Scatter(x=y_hat2_3[:,0], y=y_hat1_4[:,1], name='LOWESS, frac=1/4', line=dict(color='orange')))84        fig.add_traces(go.Scatter(x=y_hat2_3[:,0], y=y_hat1_7[:,1], name='LOWESS, frac=1/7', line=dict(color='yellowgreen')))85        fig.update_layout(dict(plot_bgcolor = 'white'))86        fig.update_traces(marker=dict(size=3))87        fig.show() 88def get_LOWESS_degree_by_ratio(filtered_data, ratio):89    if(test_monotonic(filtered_data)==False):90        print("!! the data is not monotonic !!")91        return92    min_data=1093    for i in range(len(filtered_data)-1):94        if filtered_data[i][1] < min_data:95            min_data = filtered_data[i][1]96        if min(filtered_data[i][1], filtered_data[i+1][1])<ratio and ratio<max(filtered_data[i][1], filtered_data[i+1][1]):97            return interpolator(filtered_data, i, i+1, ratio)98    print("!! no data found !!")99    if ratio <= min_data:100        return 0101def interpolator(data, index1, index2, ratio): # returns degree (float)102    return data[index1][0] + (ratio-data[index1][1])/(data[index2][1]-data[index1][1])103def test_monotonic(input):  # for lowess filter104    peak_num=0105    for i in range(1,len(input)-1):106        if (input[i+1][1]<input[i][1] and input[i-1][1]<input[i][1]) or (input[i+1][1]>input[i][1] and input[i-1][1]>input[i][1]):  # if there is a peak107            peak_num+=1108    if peak_num!=1:109        return False110    else:111        return True112###########################################################################113################ Savitzky-Golay filter  ###################################114###########################################################################115def SAVGOL_filter():116    df = pd.read_csv('ground_truth_reweight.csv', encoding='utf-8')117    x=df['Phi [deg]'].values ...tests.py
Source:tests.py  
...21        assert core.base(13, "0123456789ABCDEF", 2) == "0D"22        assert core.base(16, "0123456789ABCDEF", 2) == "10"23        assert core.base(256, "0123456789ABCDEF", 2) == "100"24        pass25    def test_monotonic(self):26        id = core.monotonic(27            resolution=core.Resolution.days,28            now=datetime.datetime(2018, 12, 31, 23, 59, 59),29            alphabet="0123456789",30            start=datetime.datetime(2018, 1, 1),31            overflow_years=1,32        )33        assert id == "999"34        pass35    def test_equivalence(self):36        hs = core.HagelSource()37        now = datetime.datetime.now()38        assert hs.monotonic(now) == core.monotonic(now=now)39        pass40    def test_random(self):41        ids = [core.random() for i in range(100)]42        assert len(set(ids)) == 10043        pass44class TestHagelSource(unittest.TestCase):45    def test_init(self):46        hs = core.HagelSource(overflow_years=42)47        assert (hs.end - hs.start).total_seconds() == hs.total_seconds48        assert hs.total_seconds == 42 * 3153600049        assert hs.B == len(hs.alphabet)50        assert hs.B ** hs.digits == hs.combinations51        assert hs.total_seconds / hs.combinations == hs.resolution52        pass53    def test_monotonic(self):54        hs = core.HagelSource(55            resolution=core.Resolution.days,56            alphabet="0123456789",57            start=datetime.datetime(2018, 1, 1),58            overflow_years=1,59        )60        id = hs.monotonic(now=datetime.datetime(2018, 12, 31, 23, 59, 59))61        assert len(id) == hs.digits62        assert id == "999"63        pass64    def test_t_0(self):65        hs = core.HagelSource()66        first = hs.monotonic(now=hs.start)67        assert set(first) == set(hs.alphabet[0]), (...post_histogram_monotonic.py
Source:post_histogram_monotonic.py  
...12    Error increases linearly as the range increases.13    See Section 3.1: https://arxiv.org/pdf/0904.0942.pdf14    """15    return np.diff(isotonic_regression(counts.cumsum()), prepend=0)16def test_monotonic():17    epsilon = .0518    sensitivity = 119    # setup20    data = np.sqrt(np.random.uniform(size=1000))21    edges = np.sort(np.sqrt(np.random.uniform(size=100)))22    edge_indexes = list(range(len(edges)))23    # make measurement24    from opendp.trans import make_find_bin, make_count_by_categories25    from opendp.meas import make_base_geometric26    trans = make_find_bin(edges) >> make_count_by_categories(edge_indexes, TIA="usize")27    meas = trans >> make_base_geometric(sensitivity / epsilon, D="VectorDomain<AllDomain<i32>>")28    # release29    # the first bin is anything below the first edge and last bin is anything after the last edge30    exact_counts = np.array(trans(data)[1:-1])31    noisy_counts = np.array(meas(data)[1:-1])32    monot_counts = postprocess_histogram_monotonic_cumsum(noisy_counts)33    import matplotlib.pyplot as plt34    midpoints = get_midpoints(edges)35    plt.plot(midpoints, exact_counts.cumsum(), label="exact")36    plt.plot(midpoints, noisy_counts.cumsum(), label="noisy")37    plt.plot(midpoints, monot_counts.cumsum(), label="consistent")38    plt.legend()39    plt.show()...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
