Best Python code snippet using tavern
DataAnalysis.py
Source:DataAnalysis.py  
...50        a = DataCollector(os.getcwd() + "test/", data_name_list=["d1", "d2", "d3"], data_length_when_save=200)51        for i in range(2000):52            a.add_data([[1, 2], [1, 2, 3], [1, 2, 3, 4]])53    @staticmethod54    def test_load_one():55        a = np.load(os.getcwd() + "test/d3_1800.npy")56        print(a)57        print(a.shape)58class DataAnalysis():59    @staticmethod60    def plot_hist_on_different_ylabel(x, y, kwargs_for_ax=None, xlim=None):61        '''62        ç»å¶ä¸åy labelä¸çxçåå¸,ä¼å
æ ¹æ®yè¿æ»¤x,è¿æ»¤çæ¯ç»xä½ç´æ¹å¾63        :param x: æµ®ç¹æ°åé64        :param y: æ´æ°åé,代表label65        :return:66        '''67        assert isinstance(x, np.ndarray)68        assert isinstance(y, np.ndarray)69        y = y.astype(np.int8)70        assert x.shape[0] == y.shape[0]71        labels = list(set(y))72        label_to_x_dict = {}73        for label in labels:74            # éåºlabelåæ¯ä¸ªlabelç¸åçx,ä¹å°±æ¯group by label75            index = np.argwhere(label == y)76            filted_x = x[index]77            label_to_x_dict[label] = filted_x78        n_ax = len(labels)79        # 妿label大äº9,å°±3å,å°äº9就两å80        if n_ax >= 9:81            n_cols = 382        else:83            n_cols = 284        n_rows = 085        while n_rows * n_cols < n_ax:86            n_rows += 187        fig, ax_list = plt.subplots(nrows=n_rows, ncols=n_cols)88        ax_list = ax_list.flatten()89        for i in range(n_ax):90            x = label_to_x_dict[labels[i]]91            mean = np.mean(x)92            std = np.std(x)93            if kwargs_for_ax is None:94                ax_list[i].hist(x, )95            else:96                ax_list[i].hist(x, **kwargs_for_ax)97            mean = "%.4f" % mean98            std = "%.4f" % std99            ax_list[i].set_title(str(labels[i]) + " mean: %s, std: %s" % (mean, std))100            if xlim is not None:101                ax_list[i].set_xlim(*xlim)102        fig.tight_layout()103        return plt104    @staticmethod105    def test_plot_hist_on_different_ylabel():106        DataAnalysis.plot_hist_on_different_ylabel(107            x=np.array([1, 2, 3, 4, 5, 6, 7, 8]),108            y=np.array([1, 2, 3, 1, 2, 3, 1, 1])109        ).show()110if __name__ == '__main__':111    # DataCollector.test_save()112    # DataCollector.test_load_one()...test_database.py
Source:test_database.py  
...23    def test_load_all(self):24        database = Database(':memory:')25        result = database.load_all('SELECT * FROM habits', [])26        self.assertEqual(5, len(result))27    def test_load_one(self):28        database = Database(':memory:')29        result = database.load_one('SELECT rowid FROM habits WHERE rowid=?', [1])...test_yahoo_events.py
Source:test_yahoo_events.py  
...5from pxtrade.events.yahoo import (6    load_yahoo_prices,7    YahooAssetLoader,8)9def test_load_one():10    with pytest.raises(NotImplementedError):11        load_yahoo_prices(None)  # not a supported type12def test_loader():13    reset()14    with pytest.raises(TypeError):15        # requires a backtest object16        YahooAssetLoader(None, None)17    class MyStrategy(Strategy):18        def generate_trades(self):19            return None20    stock = Stock("AAPL")21    stock.yahoo_ticker = 12322    backtest = Backtest(MyStrategy())23    # yahoo_ticker for stock must be None or string...Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!
