Best Rod code snippet using rod.Focus
dynamic.go
Source:dynamic.go
1package dynamic2import "fmt"3/**4 * the "rod cutting" problem consists of two inputs:5 * - a list of prices for rods of integer lengths6 * - an integer length of a rod7 * the output of the problem is the maximum price8 * that can be obtained by cutting the rod into9 * integer length pieces -- and optionally the10 * places the rod need be cut in order to obtain11 * that price.12 */13type RodPrices []int14/* we can solve the problem using a divide-and-conquer15 * method by realizing that the max price can be16 * obtained by making no cuts or by starting with17 * the cut that obtains the maximum price closest18 * to one side of the rod. then, if further cuts19 * are required, the cuts made on the other side20 * of the first cut must maximize the price of the21 * remaining length of rod, or otherwise they wouldn't22 * maximize the price of the original rod.23 *24 * this recursive version demonstrates the essential25 * reasoning described above. it is *not* a dynamic26 * programming algorithm.27 */28func (p RodPrices) CutRodRecursive(n int) int {29 if n == 0 {30 return 031 }32 var r int33 q := p[n]34 for i := 1; i < n; i++ {35 r = p.CutRodRecursive(i)36 q = Max(q, r + p[n-i])37 }38 return q39}40func Max(x, y int) int {41 if x < y {42 return y43 }44 return x45}46/* the performance issue here and the reason this is47 * not dynamic programming is that the one call to48 * `CutRodRecursive` will cause multiple recursive49 * calls /with the same parameters/50 *51 352 / | \53 2 1 054 / | \ |55 2 1 0 056 / | |571 0 058|59*60* depicts the recursive calls necessary for an initial61* call with n=3, for instance. it's a self-similar62* tree with a depth of 3: each level is created by63* making two copies of the current level, one with64* and one without the root node, and making all n+165* resulting root nodes the child nodes of a new root 66* node to create a tree of depth n+1.67* since the number of nodes doubles for each layer of68* depth, the number of nodes in such a tree is 2^n.69* that is, this algorithm runs in exponential time.70*71* one way to avoid the recursive calls is memoization.72* this is still not dynamic programming, although73* it is just about as performant. it modifies the74* existing recursive algorithm to store results75* after they've been computed, avoiding traversing76* the self-similarities in the above tree.77*/78func cutRodMemoizedH(p RodPrices,79 n int, memp []int) int {80 if n == 0 {81 return 082 }83 if memo := memp[n]; memo >= 0 {84// print("got the memo\n")85 return memo86 }87 var r int88 q := p[n]89 for i := 1; i < n; i++ {90 r = cutRodMemoizedH(p, i, memp)91 q = Max(q, r + p[n-i])92 }93 memp[n] = q94 return q95}96func (p RodPrices) CutRodMemoized(n int) int {97 memp := make([]int, n + 1)98 for idx, _ := range memp {99 memp[idx] = -1100 }101 return cutRodMemoizedH(p, n, memp)102}103/* the dynamic programming approach here is to make104 * filling in the memoization data structure, `memp`,105 * the central focus rather than viewing the data106 * structure as an add-on to a recursive approach.107 * indeed "programming" in the phrase dynamic 108 * programming refers to a data structure as in109 * the program of events at a conference, not110 * programming as in writing code: the focus111 * is on updating a data structure based on112 * the current values in that data structure.113 */114func (p RodPrices) CutRodDP(n int) int {115 mp := make([]int, n + 1)116 mp[0] = 0117 var q, r int118 for m := 1; m <= n; m++ {119 q = p[m]120 for i := 1; i < m; i++ {121 r = mp[i]122 q = Max(q, r + p[m-i])123 }124 mp[m] = q125 }126 return mp[n]127}128/* we can additionally maintain a slice with129 * the data about the length of cuts required130 * to obtain the the maximum price131 */132func (p RodPrices) CutRodDPSol(n int) ([]int, []int) {133 mp := make([]int, n + 1)134 fc := make([]int, n + 1)135 mp[0] = 0136 var q, r, s int137 for m := 1; m <= n; m++ {138 q = p[m]139 fc[m] = m140 for i := 1; i < m; i++ {141 r = mp[i]142 s = r + p[m-i]143 if s > q {144 q = s145 fc[m] = i146 }147 }148 mp[m] = q149 }150 return mp, fc151}152/* here's maintaining solution data with the153 * memoized version154 * todo: cleanup this impl, removing excess vars, etc.155 */156func cutRodMemoSolH(p RodPrices, n int,157 memp []int, mefc [][]int) (int, []int) {158 if n == 0 {159 return 0, make([]int, 0)160 }161 if memo := memp[n]; memo >= 0 {162 return memo, mefc[n]163 }164 var r, s int165 var sol, rsol []int166 q := p[n]167 fc := n168 sol = make([]int, 0)169 for i := 1; i < n; i++ {170 r, rsol = cutRodMemoSolH(171 p, i, memp, mefc)172 s = r + p[n-i]173 if s > q {174 q = s175 fc = n-i176 sol = rsol177 }178 }179 memp[n] = q180 sol = append(sol, fc)181 mefc[n] = sol182 return q, sol183}184func (p RodPrices) CutRodMemoSol(n int) (int, []int) {185 memp := make([]int, n + 1)186 mefc := make([][]int, n + 1)187 for idx, _ := range memp {188 memp[idx] = -1189 }190 return cutRodMemoSolH(p, n, memp, mefc)191}192/* this is an alternate approach described in the193 * text, based on the notion of "density".194 * it doesn't yield correct results and is included195 * as an example of such.196 */197func (p RodPrices) GreedyCut(n int) int {198 calc_dens := func(m int) float64 {199 return float64(m)/float64(p[m])200 }201 var md, cd float64202 var mdlen int203 mdlen = n204 md = calc_dens(n)205 for m := 1; m < n; m++ {206 cd = calc_dens(m)207 if cd > md {208 mdlen = m209 md = cd210 }211 }212 if mdlen == n {213 return p[n]214 } else {215 return p[mdlen] + p.GreedyCut(n-mdlen)216 }217}218/* consider now a variation on the problem219 * wherein each cut incurs some fixed cost,220 * so the profit made from the rod is the221 * sum of the prices minus the cost of the cuts222 */223type RodPricesFC struct {224 Prices []int225 Cost int226}227func (pfc RodPricesFC) CutRodRecursive(n int) int {228 p := pfc.Prices229 c := pfc.Cost230 if n == 0 {231 return 0232 }233 var r int234 q := p[n]235 for i := 1; i < n; i++ {236 r = pfc.CutRodRecursive(i)237 q = Max(q, r + p[n-i] - c)238 }239 return q240}241func (pfc RodPricesFC) CutRodDP(n int) int {242 p := pfc.Prices243 c := pfc.Cost244 mp := make([]int, n + 1)245 mp[0] = 0246 var q, r int247 for m := 1; m <= n; m++ {248 q = p[m]249 for i := 1; i < m; i++ {250 r = mp[i]251 q = Max(q, r + p[m-i] - c)252 }253 mp[m] = q254 }255 return mp[n]256}257/**258 * the matrix-chain multiplication problem is259 * about parenthesizing matrices, not actually260 * performing multiplication: scalar multiplication261 * is a costly computation in relation to addition262 * and all other operations involved in computing263 * the product of two matrices.264 *265 * this problem is to determine, given a sequence266 * of matrices, the order to compute pairwise267 * products in such that the pqr scalar multiplications268 * required for every two matrices of dimensions 269 * p by q and q by r is minimized over all270 * P(n) = \sum_{k=1}^{n-1} P(k)P(n-k) ~= 2^n271 * possible ways to compute the n-1 pairwise products272 * required for the (associative) product of all273 * matrices in the sequence.274 *275 * since the number of scalar multiplications is276 * dependent on the matrices dimension only, and277 * since the number of rows in each matrix must be278 * equal to the number of columns in the previous279 * matrix (if any), the input to the problem is a280 * sequence of dimensions d_0, ..., d_n281 * corresponding to a product of matrices A_1...A_n282 * such that A_i is a i - 1 by i matrix283 */284type MDims []int285/* as suggested by the above recursive calculation286 * of the number of ways to parenthesize the matrices,287 * and because the outermost parens in an optimal288 * parethesization must contain optimal 289 * parenthesizations of their subsequences in order290 * not to contradict optimality of the original291 * parethezation, a recursive calculation of the292 * number of scalar multiplications required in293 * an optimal parethezation looks like294 m[i,j] = min_{i<=k<j} {m[i,k]+m[k+1,j]+p_{i-1}p_kp_j}295 * where m[i,j] is the number of multiplications296 * required for an optimal parenthezation (one that297 * minimizes scalar multiplications) of matrices298 * A_i..A_j299 *300 * in the dynamic programming approach, we make301 * the tabular data m[i,j] central to the 302 * implementation, and focus on filling in the dynamic303 * program of m[i,j] values. meanwhile, we keep track304 * of s[i,j], the index k=i,...,j-1 of the305 * parenthezation of A_i..A_j in order to reconstruct306 * an optimal solution rather that just compute307 * the number of multiplications in such a solution308 */309func (p MDims) ChainOrder() ([][]int, [][]int) {310 m := make([][]int, 0)311 s := make([][]int, 0)312 for i := 0; i < len(p); i++ {313 m = append(m, make([]int, len(p)))314 s = append(s, make([]int, len(p)))315 }316 for l := 2; l <= len(p) - 1; l++ {317 for i := 1; i <= len(p) - l; i++ {318 j := i + l - 1 /* at most len(d) - 1 */319 s[i][j] = i320 m[i][j] = m[i][i] + m[i+1][j] +321 p[i-1]*p[i]*p[j]322 for k := i + 1; k < j; k++ {323 mm := m[i][k] + m[k+1][j] +324 p[i-1]*p[k]*p[j]325 if mm < m[i][j] {326 m[i][j] = mm327 s[i][j] = k328 }329 }330 }331 }332 return m, s333}334/* here are some helpers for extracting an optimal335 * solution from the indices stored in s336 */337// todo: reconsider the linguistics here..338// looking for something more like a union type,339// which according to the faq340// https://golang.org/doc/faq#variant_types341// is properly implemented with an interface342type MParens struct {343 Left *MParens344 Right *MParens345 Idx int346}347func MakeMParens(s [][]int, i, j int) *MParens {348 if i == j {349 return &MParens{Idx: i}350 }351 k := s[i][j]352 return &MParens{353 Left: MakeMParens(s, i, k),354 Right: MakeMParens(s, k + 1, j),355 }356}357func (mp *MParens) String() string {358 if mp.Idx != 0 {359 return fmt.Sprintf("%d", mp.Idx)360 }361 return fmt.Sprintf("(%v%v)", mp.Left, mp.Right)362}363/* as with rod-cutting, the matrix chain multiplication364 * problem admits an inefficient recursive solution365 */366func (p MDims) chainCostAux(i, j int) int {367 if i == j {368 return 0369 }370 var mm int371 m := p.chainCostAux(i + 1, j) +372 p[i-1]*p[i]*p[j]373 for k := i; k < j; k++ {374 mm = p.chainCostAux(i, k) +375 p.chainCostAux(k+1,j) +376 p[i-1]*p[k]*p[j]377 if mm < m {378 m = mm379 }380 }381 return m382}383func (p MDims) ChainCost() int {384 return p.chainCostAux(1, len(p) - 1)385}386/* and the the recursive solution can be memoized387 * as usual388 */389func (p MDims) chainCostAuxMemo(memo [][]int, i, j int) int {390 if i == j {391 return 0392 }393 if mem := memo[i][j]; mem != 0 {394 return mem395 }396 var mm int397 m := p.chainCostAuxMemo(memo, i + 1, j) +398 p[i-1]*p[i]*p[j]399 for k := i; k < j; k++ {400 mm = p.chainCostAuxMemo(memo, i, k) +401 p.chainCostAuxMemo(memo, k+1,j) +402 p[i-1]*p[k]*p[j]403 if mm < m {404 m = mm405 }406 }407 memo[i][j] = m408 return m409}410func (p MDims) ChainCostMemo() int {411 memo := make([][]int, 0)412 for i := 0; i < len(p); i++ {413 memo = append(memo, make([]int, len(p)))414 }415 return p.chainCostAuxMemo(memo, 1, len(p) - 1)416}417/**418 * the Longest Common Sequence (LCS) problem is,419 * given two sequences X = (x_1,..., x_n) and420 * Y = (y_1, ..., y_m), to the longest sequence421 * Z = (z_1, ..., z_k) such that Z is a subsequence422 * of both X and Y.423 * we find optimal substructure in this problem424 * by considering the cases x_n == y_m and otherwise:425 * if x_n == y_m, then x_n == y_m == z_k since426 * any Z that doesn't acknowledge the last element427 * of X and Y can be made longer by including this428 * element. otherwise, in the case x_n != y_m,429 * we cannot have z_k == x_n && z_k == y_m, so430 * the LCS of X, Y must be the LCS of either431 * X_{n-1} = (x_1,..., x_{n-1}) or Y_{n-1}.432 *433 * as with the matrix chain multiplication problem,434 * we'll fill in a program (in the sense of a table)435 * with both the value being optimized (length of436 * the LCS) as well as information about how to437 * navigate from a problem to its optimal subproblems.438 */439const (440 XA = 1441 YA = 2442 XYA = 3443)444func LCS(x, y []rune) ([][]int, [][]int) {445 m := make([][]int, 0)446 s := make([][]int, 0)447 for i := 0; i < len(x) + 1; i++ {448 m = append(m, make([]int, len(y) + 1))449 s = append(s, make([]int, len(y) + 1))450 }451 for i := 1; i < len(x) + 1; i++ {452 for j := 1; j < len(y) + 1; j++ {453 switch {454 case x[i-1] == y[j-1]:455 s[i][j] = XYA456 m[i][j] = m[i-1][j-1] + 1457 case m[i-1][j] < m[i][j-1]:458 s[i][j] = YA459 m[i][j] = m[i][j-1]460 default:461 s[i][j] = XA462 m[i][j] = m[i-1][j]463 }464 }465 }466 return m, s467}468/* reconstruct the optimal solution.469 * todo: use m, the table of lengths, to reconstruct470 */471func LCSsols(x, y []rune, s[][]int) []rune {472 rsol := make([]rune, 0)473 i := len(s) - 1474 j := len(s[0]) - 1475 for i > 0 && j > 0 {476 switch s[i][j] {477 case XYA:478 rsol = append(rsol, x[i-1])479 i--480 j--481 case XA:482 i--483 case YA:484 j--485 default:486 panic(fmt.Sprintf("unknown s %v", s[i][j]))487 }488 }489 sol := make([]rune, 0)490 for k := len(rsol) - 1; k >= 0; k-- {491 sol = append(sol, rsol[k])492 }493 return sol494}495/** todo: optimal binary search trees */...
page.go
Source:page.go
...43 for i := 0; i < 1000; i++ {44 if p.Has(selector) {45 el := p.El(selector)46 if el.MustVisible() {47 el.MustFocus()48 el.MustScrollIntoView()49 el.MustClick()50 return true51 }52 }53 time.Sleep(time.Millisecond * 100)54 }55 return false56}57func (p *PageTemplate) FocusWhenAvailable(selector string) bool {58 for i := 0; i < 1000; i++ {59 if p.Has(selector) {60 el := p.El(selector)61 el.MustFocus()62 return true63 }64 time.Sleep(time.Millisecond * 100)65 }66 return false67}68func (p *PageTemplate) MoveMouseTo(el *rod.Element) {69 shape, err := el.Shape()70 if err == nil {71 point := shape.OnePointInside()72 p.P.Mouse.MustMove(point.X, point.Y)73 } else {74 if cErr, ok := err.(*cdp.Error); ok {75 log.Println("failed to get element shape", cErr)...
bili.go
Source:bili.go
...10type BiliHandle struct {11 B *rod.Browser //æµè§å¨å¥æ12 Page *rod.Page //页é¢å¥æ13 IsLogin bool //æ¯å¦ç»å½14 FocusNumers int15}16func NewBiHandle() *BiliHandle {17 b := GetBrowser("user/bili" , false)18 page := b.MustPage("http://bilibili.com")19 login := !page.MustWaitLoad().MustHasR(".unlogin-avatar" , "ç»å½")20 return &BiliHandle{21 B: b,22 Page: page,23 IsLogin: login,24 }25}26//çå¾
ç¨æ·ç»å½27func (b *BiliHandle) WaitLogIn(){28 if b.IsLogin {29 b.B.MustPage("http://bilibili.com").MustElement(".bili-icon_dingdao_dengchu")30 }31}32//ææ¾è§é¢33func (b *BiliHandle) Play() {34 v := b.Page.MustElement(".video-card-reco a").MustAttribute("href")35 childPage := b.B.MustPage(fmt.Sprintf("http:%s" , *v))36 childPage.MustElement("#bilibiliPlayer").MustClick()37 childPage.MustElement(".bilibili-player-upinfo-span.restart")38 fmt.Print("vide play ending")39 childPage.Close()40 //b.MustPage()41}42//å享è§é¢43func (b *BiliHandle) Share () {44}45//ç¹èµè§é¢46func (b *BiliHandle) Like() {47 48}49type Dynamic struct {50 Time string `json:"time"`51 Content string `json:"content"`52}53// è大å¥å¨çä½ 54func (b *BiliHandle)BigBrotherIsWatchingYou(id string) {55 var dynamicArr []Dynamic56 var dynamicArrItme Dynamic57 scpage := b.B.MustPage(fmt.Sprintf("https://space.bilibili.com/%s/dynamic" ,id))58 for {59 scpage.Reload()60 dynamicArr = nil61 scpage.MustElement(".main-content")62 arr := scpage.MustElements(".main-content")63 for _ , v := range arr {64 dyTime := v.MustElement(".detail-link.tc-slate").MustText()65 content := v.MustElement(".card-content").MustText()66 dynamicItem := Dynamic{67 Time: dyTime,68 Content: content,69 }70 dynamicArr = append(dynamicArr , dynamicItem)71 }72 //ç¨åºç¬¬ä¸æ¬¡è¿è¡73 if(dynamicArrItme.Time == "" ){74 dynamicArrItme = dynamicArr[0]75 utils.WxSendMsg(string(`è大å¥å·²ç»å¼å§ççä»å¦ ï¼ æåä¸æ¡å¨ææ´æ°ä¸º` + dynamicArrItme.Time))76 fmt.Println("fir")77 }78 if dynamicArrItme.Time != dynamicArr[0].Time || dynamicArrItme.Content != dynamicArr[0].Content {79 fmt.Println("æ´æ°")80 utils.WxSendMsg(fmt.Sprintf("è大å¥åç°Taçå¨æå·²ç»æ´æ°å¦ ï¼ï¼ï¼ æ¶é´ä¸º ï¼ %s , å
容为 : %s " , dynamicArr[0].Time ,dynamicArr[0].Content))81 dynamicArrItme = dynamicArr[0]82 }83 rand.Seed(time.Now().UnixNano())84 time.Sleep(time.Second * 3 )85 }86}87//转åå¨æ88func (b *BiliHandle)Forward() {89 90}91//è·åæå
³æ³¨çå表92func (b *BiliHandle) GetFocus() {93 var rs []string94 spacePage := b.B.MustPage("http://space.bilibili.com")95 spacePage.MustElement(".n-statistics a").MustClick()96 spacePage.MustElement(".list-item")97 for{98 arr := spacePage.MustElements(".list-item")99 for _ , v := range arr {100 name , _ := v.MustElement(".fans-name").Text()101 rs = append(rs ,name)102 }103 if len(arr) == 20 {104 spacePage.MustElement(".be-pager-next").MustClick()105 time.Sleep(time.Second)106 }else {107 fmt.Println("ending...")108 spacePage.Close()109 break110 }111 }112 fmt.Println(rs)113 fmt.Printf( "ä¸å
±å
³æ³¨äººæ°ä¸º %d" , len(rs))114}115//æçç´æå
³æ³¨å表116func (b *BiliHandle) GetLiveFocus (){117 type LiveItme struct {118 Name string `json:"name"`119 Status string `json:"status"`120 }121 var rsString string122 cpage := b.B.MustPage("https://link.bilibili.com/p/center/index#/user-center/follow/1")123 for{124 var liveArr []LiveItme125 cpage.Reload()126 cpage.MustElement(".favourite-card")127 arr := cpage.MustElements(".favourite-card")128 for _ , v := range arr {129 liveArr = append(liveArr , LiveItme{130 Name: v.MustElement(".anchor-name").MustText(),...
Focus
Using AI Code Generation
1import (2func main() {3 page.MustElement("input[name=q]").MustInput("rod").MustPress(input.Enter)4 page.MustElement("a[href='/search?q=rod']").MustFocus()5 fmt.Println(page.MustScreenshot())6}7import (8func main() {9 page.MustElement("input[name=q]").MustInput("rod").MustPress(input.Enter)10 page.MustElement("a[href='/search?q=rod']").MustFocus()11 fmt.Println(page.MustScreenshot())12}13import (14func main() {15 page.MustElement("input[name=q]").MustInput("rod").MustPress(input.Enter)16 page.MustElement("a[href='/search?q=rod']").MustFocus()17 fmt.Println(page.MustHas("a[href='/search?q=rod']"))18}19import (20func main() {21 page.MustElement("input[name=q]").MustInput("rod").MustPress(input.Enter)22 page.MustElement("a[href='/search?q=rod']").MustFocus()23 fmt.Println(page.MustHas("a[href='/search?q=rod']"))24}25import (26func main() {27 page.MustElement("input[name=q]").MustInput("rod").MustPress(input.Enter)28 page.MustElement("a[href='/search?q=rod']").MustFocus()29 fmt.Println(page.Has("a[href='/search?q=rod']"))30}31import (32func main() {
Focus
Using AI Code Generation
1import (2func main() {3 page.MustElement("#hplogo").MustFocus()4 fmt.Println("Focus on Google logo")5}6import (7func main() {8 page.MustElement("#hplogo").MustFocus()9 fmt.Println("Focus on Google logo")10}11import (12func main() {13 page.MustElement("#hplogo").MustFocus()14 fmt.Println("Focus on Google logo")15}16import (17func main() {18 page.MustElement("#hplogo").MustFocus()19 fmt.Println("Focus on Google logo")20}21import (22func main() {23 page := rod.New().MustConnect().Must
Focus
Using AI Code Generation
1import (2func main() {3 browser := rod.New().Connect()4 page.Element(`input[name="q"]`).Focus()5 page.Element(`input[name="q"]`).Input("Hello World")6 page.Keyboard.Press("Enter")7 page.WaitLoad()8 title := page.MustTitle()9 fmt.Println(title)10}11import (12func main() {13 browser := rod.New().Connect()14 page.Element(`input[name="q"]`).Click()15 page.Element(`input[name="q"]`).Input("Hello World")16 page.Keyboard.Press("Enter")17 page.WaitLoad()18 title := page.MustTitle()19 fmt.Println(title)20}21import (22func main()
Focus
Using AI Code Generation
1import (2func main() {3 l := launcher.New().MustLaunch()4 defer l.Close()5 b := rod.New().ControlURL(l).MustConnect()6 input := page.MustElement("input[name=q]")7 input.MustFocus()8 input.MustInput("rod")9 input.MustPress(input.Enter)10 page.MustWaitLoad()11 page.MustScreenshot("screenshot.png")12}
Focus
Using AI Code Generation
1import (2func main() {3 browser := rod.New().Connect()4 element := page.Element("#tsf > div:nth-child(2) > div > div.RNNXgb > div > div.a4bIc > input")5 element.Focus()6 err := element.WaitVisible()7 if err != nil {8 fmt.Println(err)9 }10}112020/12/05 13:34:08 [1] [0.000s] [rod] [main.go:34] [main] rod.New: {"headless":true,"slowMotion":0,"debug":false,"defaultViewport":null,"executablePath":"","timeout":0,"monitor":0,"extra":null,"devtools":false,"trace":false,"logger":null,"launcher":null,"controlURL":"","controlTimeout":0,"controlBrowser":null,"controlPage":null}122020/12/05 13:34:08 [1] [0.000s] [rod] [main.go:34] [main] rod.New: {"headless":true,"slowMotion":0,"debug":false,"defaultViewport":null,"executablePath":"","timeout":0,"monitor":0,"extra":null,"devtools":false,"trace":false,"logger":null,"launcher":null,"controlURL":"","controlTimeout":0,"controlBrowser":null,"controlPage":null}132020/12/05 13:34:08 [1] [0.000s] [rod] [main.go:34] [main] rod.New: {"headless":true,"slowMotion":0,"debug":false,"defaultViewport":null,"executablePath":"","timeout":0,"monitor":0,"extra":null,"devtools":false,"trace":false,"logger":null,"launcher":null,"controlURL":"","controlTimeout":0,"controlBrowser":null,"controlPage":null}142020/12/05 13:34:08 [1] [0.000s] [rod] [main.go:34] [main] rod.New: {"headless
Focus
Using AI Code Generation
1import "fmt"2type Rod struct {3}4func (r Rod) Focus() {5fmt.Println("Focus method of Rod class")6}7func main() {8r.Focus()9}10import "fmt"11type Rod struct {12}13func (r *Rod) Focus() {14fmt.Println("Focus method of Rod class")15}16func main() {17r.Focus()18fmt.Println("Length of rod is:", r.length)19}20import "fmt"21type Rod struct {22}23func (r *Rod) Focus() {24fmt.Println("Focus method of Rod class")25}26func main() {27r.Focus()28fmt.Println("Length of rod is:", r.length)29}30import "fmt"31type Rod struct {32}33func (r Rod) Focus
Focus
Using AI Code Generation
1import (2func main() {3 l := launcher.New().Headless(false)4 browser := rod.New().ControlURL(l).MustConnect()5 defer browser.MustClose()6 page.MustWaitLoad()7 searchBar := page.MustElement("input[name=q]")8 searchBar.MustFocus()9 searchBar.MustInput("Rod")10 page.MustElement("input[name=btnK]").MustClick()11 page.MustWaitLoad()12 title := page.MustTitle()13 fmt.Println(title)14}
Focus
Using AI Code Generation
1{2 {3 static void Main(string[] args)4 {5 Rod myRod = new Rod();6 myRod.Focus();7 }8 }9}10{11 {12 static void Main(string[] args)13 {14 Rod myRod = new Rod();15 myRod.Focus();16 }17 }18}19{20 {21 static void Main(string[] args)22 {23 Rod myRod = new Rod();24 myRod.Focus();25 }26 }27}28{29 {30 static void Main(string[] args)31 {32 Rod myRod = new Rod();33 myRod.Focus();34 }35 }36}37{38 {
Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!