Power Your Software Testing
with AI and Cloud
Supercharge QA with AI for Faster & Smarter Software Testing

This free online tool allows you to quickly convert degrees to radians, get values in terms of π, and simplify angle calculations for math, physics, and programming.
°
Calculate
A degree is a unit of measurement for angles. A full circle is divided into 360 degrees (°), making degrees a common way to express angles in math, geometry, navigation, and engineering. Examples include 90 degrees, 180 degrees, or 45 degrees.
A radian is another unit for measuring angles, based on the radius of a circle. One radian is the angle formed when the arc length is equal to the radius of the circle. A full circle contains 2π radians. Radians are widely used in trigonometry, physics, and programming because they simplify calculations with circles and periodic functions.
Converting degrees to radians is simple using the degrees to radians formula:
Radians=Degrees×180π
For example, to convert 90 degrees in radians:
90∘×180π=2π radians
You can also use our degree to radian calculator to automatically convert degree to radian values in seconds, either as a decimal or degrees to radians in terms of pi.
| Degrees | Radians |
|---|---|
| 30° | π/6 |
| 45° | π/4 |
| 60° | π/3 |
| 90° | π/2 |
| 270° | 3π/2 |
| 120° | 2π/3 |
| 135° | 3π/4 |
| 150° | 5π/6 |
| 180° | π |
| 360° | 2π |
Manually converting degrees to radians can be slow and error-prone. Our degree to radian calculator ensures accuracy and saves time, making deg to rad conversions effortless.
radians=degrees×180π
Use this formula or our degrees to radians calculator to convert degree to radian instantly.
Use the formula: radians = degrees × π / 180, or enter the degree value in our calculator for instant results.
90 degrees equals π/2 radians.
Degrees divide a circle into 360 parts, while radians measure angles based on the radius of a circle.
Yes, 180 degrees is exactly π radians.
To convert degrees to radians, multiply the angle in degrees by π/180.
No, 180 degrees equals π radians (approximately 3.1416 radians), not 1 radian.
A full circle measures 360°, and since 180° = π radians, doubling that gives 360° = 2π radians, which represents one complete revolution.
Use the formula: 150 × (π / 180) = 5π/6 radians (approximately 2.618 radians).
Did you find this page helpful?
Start your journey with LambdaTest
Get 100 minutes of automation test minutes FREE!!